A Refined Approach for Examining *Phytophthora ramorum* Risk in the Eastern U.S.

> Frank Koch NC State University USDA-FS FHM, RTP

In Support of the National SOD Survey Protocol...

- Two tasks:
 - Risk-based spatial database for SOD
 - Any relevant data layers
 - Use the database in a modeling context

I. Risk-based Spatial Database for SOD

- Basic strategy: Develop data for the three categories of the initial overlay analysis
- Still in progress, but have a number of examples...

- Previously using PRISM data for climate analyses
 - 2 km resolution, but expensive
 - Not updated to current
- Can we generate more up-to-date products?
 - NOAA daily and monthly station data
- Spatial Interpolation
 - Gradient plus inverse distance squared (Nalder & Wein 1998)
 - Compared favorably to several other methods, including ordinary kriging, detrended kriging, co-kriging, inverse distance squared

From Nalder and Wein (1998)

 GIDS Model (based on the 30 nearest neighbors)

$$Z_{k} = \frac{\left[\sum_{i=1}^{30} \frac{Z_{i} + C_{x}(X_{k} - X_{i}) + C_{y}(Y_{k} - Y_{i}) + C_{e}(E_{k} - E_{i})}{d_{i}^{2}}\right]}{\sum_{i=1}^{30} \frac{1}{d_{i}^{2}}}$$

Where,

 Z_k = predicted value at unmeasured location k

 Z_i = measured value at location *i*

X= x-coordinate

Y= y-coordinate

E= elevation

D=distance from measured location *i* to Z

 C_x , C_y , and C_e are based on the ordinary least square solution of the following regression model using 30 nearest neighbors to location *k*.

 $Z = a + C_x X + C_v Y + C_e E + \varepsilon$

Where, *a* is the intercept and ε is error.

Regression Model Selection

- Using three possible gradients, there are seven possible models
 - 1. $Z = a + CxX + CyY + CeE + \varepsilon$
 - 2. Z =a + CyY + CeE + ε
 - 3. $Z = a + CxX + CeE + \varepsilon$
 - 4. $Z = a + CxX + CyY + \varepsilon$
 - 5. Z =a + CxX + ε
 - 6. Z =a + CyY + ε
 - 7. Z =a + CeE + ε
- Test each model to examine if all the independent variables are significant
- If more than one model has all significant independent variables then the model with greatest R² is selected
- If no model has all significant independent variables then simple inverse distance square weighting is used (i.e. all coefficients are set to zero)

Temperature Model Selection

for each prediction point

Cross-Validation Results

GIDS & Poisson Regression

- GIDS seems to work well, but what about surfaces representing number of days with appropriate conditions?
- Count-based = Poisson distribution
- Like previous GIDS, seven possible models
- Best model chosen based on chi-squared significance (or log likelihood)
- Three-dimensional distance
- Still working out a few things...

Number of Days in 2004 With Optimal Temperatures (60-80°) and Precipitation > 0.05"

Number of Consecutive Days (Allowing One Day Off) in 2004 with Optimal Temperatures and Precipitation

Number of Consecutive Days (No Days Off) in 2003 with Optimal Temperatures And Precipitation – All Reporting Stations (n=4144)

Some Preliminary Results...

Variable	Ν	Mean	Max.	RMSE
Total Days 2003	4144	64.84	191	13.36
Consecutive Days 2003	4144	6.03	21	2.15

Other Climatic Factors

- Relative Humidity
 - 100% humidity important for
 P.ramorum and other aerials (?)
 - Fewer stations
- Microclimate
 - Topographic Relative Moisture Index (TRMI)
 - represent local conditions (e.g., hollows)

- Generated by kriging of FIA plot basal area data 1 km² cells
- High-frequency pattern to FIA data, so not well predicted by smooth interpolators (poor RMSE for validation or cross-validation)

What About Understory Hosts?

- Already have estimate of understory hosts for NE U.S.
 - Again, kriged from plot data...
- Archival understory data also exists for SE U.S.
 - Strange format
 - Don't know how many plots
- Given limitations of interpolated FIA data...
 - County-level distribution maps from PLANTS national database, other sources

Pathways

- Number of potential areas for refinement
- For example, how to get at landscapes where people plant (potentially infected) nursery stock?
 - Percentage of low density residential from land cover data
 - Existing neighborhoods where people may be planting
 - Changes in road density = areas of new construction
 - Nighttime lights expansion (Imhoff et al. 1997)
 - Broad estimate of suburbanization/expansion

Percentage of Low-Density Residential Land Cover (from NLCD)

Change in Road Density 1996-2005

Nighttime Lights Expansion (Using 1992 and 2000 Imagery)

Spread via Roads

- Freight Analysis Framework
 - Volume of cargo moved by trucks
 - Nursery stock movement

Nurseries

- ReferenceUSA database
 - 13 million U.S.
 businesses
 - Have geographic coordinates
 - Search for primary descriptions
- Comprehensive lists

- When add retail locations, including home improvement centers, data layer gets quite large
- Can calculate grids of number of nursery locations within distance of a point
 - # possible
 exposures to
 (potentially)
 positive
 nurseries

Other Pathway Factors

- Housing / population density
- Road proximities
- Wildland-urban interface
 - Compiled for fire risk, but relevant for *P.ramorum*, other insects and pathogens

II. SOD Risk Modeling

- Build cost surface(s) incorporating all of these spatial data layers
 – Ideal spatial resolution?
- Model SOD movement after hypothetical introduction
 - Cellular automaton approach
 - Transition probabilities = interaction between cost and infection rate

SOD Risk Modeling (cont.)

- Many uncertainties, so try several different scenarios
 - Test range of infection rates (low, moderate, high)
 - Different cost surfaces
- Through repeated runs, can develop perpixel risk ratings