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Abstract 
Sudden oak death (SOD) is caused by an invasive pathogen, Phytophthora ramorum (P. ramorum), that 

has been killing tanoak trees in southwestern Oregon since 2001. Tanoak is an ecologically important 

keystone species that is the only acorn producer in its range, and it has high cultural value for the Native 

American tribes in the region. After initial attempts to eradicate the pathogen proved unsuccessful, land 

managers transitioned to a containment strategy that focused on limiting the spread of SOD. A critical 

part of this containment strategy is being able to quickly identify new outbreaks. Since 2012, the Oregon 

Department of Forestry has acquired annual high resolution (30 cm), 4-band multispectral airborne 

imagery to quantify and monitor disease spread and intensification. Current methods that rely on 

photointerpretation and manual delineation to assess SOD are inefficient and non-exhaustive. 

This project investigated whether Structure from Motion (SfM) workflows could be used to characterize 

the structure of infected tanoak trees and detect changes in canopy morphology over time. Supervised 

image classification methods were also tested to see if tanoak trees potentially infected with P. 

ramorum could be detected over large areas in a semi-automated process. Findings showed that the 

high-resolution imagery available in the southwestern Oregon study area were not collected with the 

overlap necessary for SfM workflows, and the resulting data products were not sufficient for 

characterizing tanoak canopies. Moreover, supervised classification methods were unable to accurately 

differentiate dead tanoak from other dead species, and the bare ground was commonly confused with 

dead trees in classification outputs. The resulting classified products, however, could be used in 

conjunction with image mosaics to guide image interpretation efforts aimed at identifying dead and 

dying tanoaks. 
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Introduction 
Sudden oak death (SOD) is caused by an invasive pathogen, Phytophthora ramorum (P. ramorum), that 

has been aggressively killing tanoak trees in southwestern Oregon since 2001 (Goheen and others, 2002) 

and northern California since 1995 (Garbelotto and others, 2001). Tanoak is an ecologically important 

keystone species that is the only acorn producer in its range, and it has high cultural value for the Native 

American tribes in the region. P. ramorum spores spread from infected foliage by means of wind and 

wind-driven rain. Spores penetrate into the bark of tanoaks where they then colonize the tissue, 

creating cankers in the bole (Figure 1) that cut off the flow of nutrients and water, effectively girdling 

the tree and likely killing it (Grünwald and others, 2012). Federal and state agencies have partnered with 

private landowners to facilitate the survey, detection, and eradication of SOD. Areas infected with SOD 

have been managed through the designation of a SOD Quarantine Area (Figure 2) under the authorities 

of the Oregon Department of Agriculture (ODA) and U.S Department of Agriculture (USDA) Animal Plant 

Health Inspection Service. However, because eradication efforts failed to stop the spread of the 

pathogen, Oregon’s disease management program transitioned in 2012 from an effort to eradicate to 

one focused on slowing the spread of the pathogen (Goheen and others, 2017). 

 

Figure 1: Image of dead or dying tanoak (left) and an image of a canker in a tanoak (right) 

In order to monitor and limit the spread of SOD, land managers depend on accurate spatial data on the 

location of new outbreaks. When SOD was first detected in Oregon, land managers started performing 

aerial surveys in southwest Oregon to detect and digitize dead or dying tanoaks and other tree species 

killed by P. ramorum. Beginning in 2012, the Oregon Department of Forestry (ODF) started contracting 

the annual acquisition of high-resolution aerial imagery over the Quarantine Area in southwestern 

Oregon. Forest pathologists and field technicians manually scan the imagery and digitize potential dead 
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or dying tanoak before visiting those locations in the field to collect samples, which are then tested for 

the presence of P. ramorum. They do this iteratively, scanning the imagery again for new infestations 

each time before returning to the field to collect samples. Efforts to limit spread and eradicate new 

infestations largely consist of a combination of cutting down host plants in and around infected areas 

(e.g., tanoak, rhododendron, huckleberry and Oregon myrtle), applying herbicides to reduce the 

sprouting of infected host plants, and the subsequent burning of felled plants (Goheen 2006; Hansen 

and others, 2019). 

The current manual delineation methods that ODF employ to track the spread of SOD are labor 

intensive, non-exhaustive and imprecise. Moreover, ODF and the USFS wanted to evaluate more novel 

remote sensing methods for identifying changes in canopy structure (e.g., shrinking crown diameter) 

from year to year that could be an early onset symptom of infected trees. For this project funded by the 

Geospatial Technology and Applications Steering Committee (GeoTASC), remote sensing specialists from 

the USDA Forest Service (USFS) Geospatial Technology and Applications Center (GTAC) partnered with 

experts from ODF and the Pacific Northwest Region of the USFS to identify suitable remote sensing 

workflows for detecting trees potentially infected with P. ramorum. The primary objectives of this 

project were 1) to test remote sensing workflows that could increase the efficiency with which potential 

SOD outbreaks are detected, as well as to identify annual spread of SOD and 2) test Structure from 

Motion (SfM) workflows for generating high quality, three-dimensional (3D) point clouds. Ideally, these 

efforts would provide accurate spatial information on dead tanoak locations for each year of available 

imagery, and the SfM outputs would provide structural information on the canopies that could be used 

to detect early onset symptoms of SOD that were potentially unrelated to spectral characteristics. 

Methods 
Study Area 

The SOD Quarantine Area is a 514 square mile area located in southwestern Oregon (Figure 2), west of 

the Cascade Range and adjacent to the Rogue River-Siskiyou National Forest. The Quarantine Area 

boundary is where land managers expect to be able to contain the spread of SOD through management 

actions. The environment is characterized by a mixture of coastal and rugged mountainous terrain, with 

vegetation that is a mixture of deciduous and conifer, open and closed canopy, with low shrubs along 

riparian corridors. The majority of land within the Quarantine Area is privately owned, with much of it 

owned by timber companies. The Generally Infested Area (GIA) was established in 2013 around the 

densest concentration of the SOD outbreak where eradication efforts were no longer required so that 

available funding could be prioritized in areas closer to the Quarantine boundaries (Goheen and others, 

2017). The southern extent of the Generally Infested Area (GIA) is approximately 4 miles north of 

California, with the western extent following the Oregon coast. To keep file sizes manageable and to 

reduce processing times, we tested remote sensing workflows on a 30 square mile project area of 

interest (AOI) in the northern part of the Quarantine Area by Gold Beach, OR.  
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Figure 2: Map of SOD Quarantine Area, Generally Infested Area and Project AOI in Southwestern Oregon. 

Annual Aerial Imagery 

High resolution (30cm) color-Infrared (CIR) imagery is collected annually for the SOD Quarantine Area. 

The vendor delivers individual images in TIFF or IMG format depending on the year, as well as mosaic 

datasets for each year. Each image and mosaic have four bands: Blue, Green, Red, and Near-Infrared, 

and have a pixel resolution of one foot. ODF provided GTAC with imagery for 2012-2017 and 2019.  

Upon inspection, we identified issues with the individual images and mosaic datasets. The primary issue 

was that there were black areas around each individual image (figure 3) that had values of 0 for each 

band instead of the NoData values they should have had. This is problematic for creating image mosaics 

because the standard mosaic operators would either include the black areas around the image in the 

resulting mosaic or create a blurred image in areas where the images overlap. When looking at the 

mosaics that were provided, like in Figure 3, there were noticeable areas within the image that were 

blurry and we could not visually identify the features.  
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Figure 3: Example of the blurry vendor-supplied mosaics. 
 

To address these issues with both the individual images and the mosaics, we developed a Python script 

that first masks out all the areas in each image that have zero values for all four bands and then mosaics 

the fixed imagery together using the “last” mosaic operator option to create an improved mosaic.  

Another issue with the aerial imagery was that only the orthocorrected images were delivered by the 

vendor, and they were therefore not suitable for SfM testing, which requires non-orthocorrected 

imagery and flight metadata with locational information for each image. Since this data was not initially 

delivered by the vendor, ODF purchased the additional, non-orthocorrected data to be used in this 

project. The vendor delivered this data for 5 years (’13, ’15-’17, and ’19) with accompanying text files for 

each year that provide the necessary flight metadata for each image. 

In addition to the annual imagery, ODF provided manually digitized tanoak mortality polygons that, 

when overlaid on the imagery, were useful for informing image interpretation and training data 

collection. While point shapefiles were provided that represent the GPS location of positive SOD 

samples, the spatial accuracy of the points was poor, meaning they couldn’t be used as training data 

because they didn’t align closely enough with imagery. 

Structure from Motion 

SfM is a method by which dense 3D point clouds are derived from overlapping aerial imagery using 

semi-automated stereoscopic techniques (Verhoeven 2011). For this project, we used Agisoft 

Metashape software (version 1.5.5) to test the suitability of the aerial imagery for SfM workflows. 

Ideally, the 3D point cloud outputs would enable us to produce detailed raster derivatives that capture 

the nuances of canopy surfaces in the study area. Panagiotidis and others (2017) demonstrated the 

application of SfM techniques for producing canopy height data and subsequent individual tree 

segments that can be used to estimate crown dimensions. Burnett and others (2017) used a similar 

approach, but they took it a step further by using individual tree segments and the imagery it was 

derived from to classify a Swiss needle cast outbreak in northwest Oregon. That data, however, was 

created from 2.5 cm UAS imagery, which is a much finer resolution than our available imagery. Even so, 

with multiple years of data, we could potentially identify early symptoms of SOD unrelated to changes in 

color, such as a reduction of crown size. 
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Certain acquisition specifications are key to the production of high-quality SfM products. Most 

importantly, stereo pairs should have 80% endlap and 60% sidelap, as this will result in fewer holes and 

shadowed areas in the point cloud, along with more observations at nadir. This is especially important in 

forested environments where adjacent images captured from closer viewpoints will facilitate more 

successful matching of adjacent images due to the similar appearance of features in both images (Webb 

and others, 2017; Westoby and others, 2012). Another key consideration for SfM workflows is the 

availability of high-resolution digital terrain models (DTM). An accurate DTM is critical for generating a 

canopy height model (CHM), which is a digital surface model (DSM) normalized to above ground heights. 

In areas where there is very sparse vegetation, it is possible to create a relatively accurate DTM from the 

aerial imagery using SfM. However, in densely forested environments where the bare earth surface is 

consistently obscured, having a lidar- derived DTM is ideal (Webb and others, 2017; Wallace and others, 

2016). The imagery available for this project was not acquired with the recommended overlap 

specifications, and it therefore may not be suitable for creating high quality products due to the 

relatively limited overlap. Moreover, a high-resolution lidar-derived DTM is only available for the 

western portion of the AOI, while a 10 ft. DTM is available for the eastern portion. This will have a 

negative impact on the quality of the CHM for the eastern part of the AOI.  

Classification 
The primary way that we attempted to detect SOD was by performing supervised classifications. 
Supervised classification is a commonly used image classification technique that relies on the input of 
land cover samples and their spectral characteristics to predict wall-to-wall land cover types. For this 
project, we explored three classification methods, two of which require classification schemes. The 
Support Vector Machine (SVM) and Maximum Likelihood Classification (MLC) algorithms, which are 
available in ArcGIS Pro (version 2.5), require a defined classification scheme for the algorithms to know 
how to classify an image. Classification schemes must include unique, mutually exclusive land cover 
classes that capture the full variation of land cover in the study area. For this project, we decided upon 
the classification scheme outlined in table 1. Because we knew it was difficult to separate dead grey 
tanoak from other dead grey tree species, we decided to add the Recently Dead Tanoak class, which 
appears as a reddish-brown tanoak that likely died within the previous two years. The third classification 
that we tested was Maximum Entropy (MaxEnt), which was attractive because it only requires samples 
from a single class of interest (Phillips and others, 2017). 

Once the classification scheme was finalized, we created the classification training points used to train 
the classification algorithms in ArcGIS Pro. Having accurate training data is crucial to the classification 
process because both the SVM and the MLC classification algorithms use the spectral signatures of each 
training point to train the classifier. We also use a subset of these classification points to perform error 
analysis on the classification output. 

 Table 1: Class Names and Values 

Class name Class value 

Live Deciduous Trees 1 

Live Coniferous Trees 2 

Bare Ground 3 
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Roads 4 

Buildings 5 

Water 6 

Recently Dead Tanoak 7 

Other Dead 8 

Old Dead Tanoak 9 

Training Data Creation for Classification and Accuracy Assessment  

To create the training dataset, we interpreted the aerial imagery in ArcGIS Pro to identify examples of 

each land cover type. Once examples were identified, we placed a point in each location and updated 

the attribute table with the corresponding land cover class names and values. For the 2019 SVM and 

MLC classifications, there were 500 total points interpreted for the classification. 30% of those points 

(150 points) were withheld from the classification in order to perform an accuracy assessment on the 

classification outputs. The accuracy dataset was created by generating an evenly weighted, random 

subset of points within ArcGIS Pro. Once each classification iteration was complete, the classified images 

were sampled at each of the accuracy assessment points in order to compare the predicted class with 

the reference class. From this information we generated an estimate of overall accuracy of the classified 

image as well as the accuracy for each class. This is done by creating error matrices that break down the 

number of correctly and incorrectly classified pixels by each land cover class. Since the goal of the 2017 

MLC was to assess the feasibility of using the signature file from the 2019 MLC training data, we only 

needed to interpret points for the accuracy assessment. A total of 90 points were interpreted for the 

2017 MLC accuracy assessment. 

Support Vector Machine 

The first classification algorithm that we tested was ArcGIS Pro’s Support Vector Machine. SVM attempts 

to identify patterns, both spectral and non-spectral, from multi-spectral imagery using statistical 

decision making to create a classified image (Oommen and others, 2008). An important characteristic of 

this classification algorithm in ArcGIS Pro is that it is object-based. Object-based classification 

approaches rely on a segmented image, which is created by grouping adjacent pixels together based on 

their similar spectral characteristics. For this project, we used the Segmentation tool in ArcGIS Pro to 

segment the four-band imagery mosaic by applying user-defined spectral and spatial weights. An 

example of a segmented image is shown in Figure 4. Once the segments are created, the mean spectral 

value for each segment is calculated and the value is extracted to overlapping training data points. The 

training data and image are then ingested into the SVM tool.  
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Figure 4: Segmented image (right) compared to the actual image (left). The segmented image groups pixels with similar spectral 
characteristics, with the value for each segment representing the mean value of those pixels. 

Maximum Likelihood Classification 

Another classification algorithm that we used to try to detect dead tanoak in the study area was the 

MLC. In contrast to the SVM algorithm, the MLC algorithm is pixel-based, meaning that it only relies on 

the spectral signature of a given pixel to classify the image. MLC executes this classification by using a 

signature file that is created from training data. Because the classification algorithm is pixel-based, it is 

simple to add more data layers (e.g., a DSM or a NDVI layer) that may improve class separability. We 

added the Normalized Difference Vegetation Index (NDVI) layer to the input classification bands. The 

NDVI is a simple differencing between the Near-Infrared (NIR) and the Red bands of the image (see 

equation 1), and it has values ranging from -1 to 1, with higher values signifying the presence of healthy, 

green vegetation. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

Equation 1. The Normalized Difference Vegetation Index 

The NDVI for each year’s imagery in this project was added as additional input to help differentiate 

between some of the non-vegetation and vegetation classes that had similar spectral signatures. The 

signature file was created from the most recent imagery (2019) and was applied to both 2017 and 2019 

imagery. If successful, this approach would be advantageous because a new training dataset would not 

need to be created every year, thus improving efficiency of SOD detection.  

Maximum Entropy Classification 

The last classification approach that we tested was the MaxEnt classification. This classification 

originated from species modeling in biology and seemed promising because it only classifies one target 

class at a time using a series of empirical formulas. This is particularly attractive since the only class we 

are interested in is Recently Dead Tanoak. We used an open source MaxEnt program developed by the 
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American Museum of Natural History through a collaboration with AT&T-research (Phillips and others, 

2017).  

This program has a plethora of parameters that can customized for any model run (Figure 5), but due to 

time constraints, this project used the default values. Before running this program, input imagery also 

must be converted to an ASCII file format. We ran two iterations of this algorithm on two different 

training datasets: Recently Dead Tanoak and Other Dead trees. As input to the program, we supplied the 

training points for the target class, along with the multispectral ASCII mosaic for 2019. 

 
Figure 5: MaxEnt model dialogue with desired inputs 

Results 
Structure from Motion 
There were several outputs from the SfM processing, including the dense point cloud, DSM, and CHM. 

Figure 6 is an oblique view of the colorized point cloud displayed in Metashape. The lighter colored trees 

are largely tanoak, while the darker colored trees are mostly Douglas fir. The grey areas, which are 

particularly noticeable at the bottom of the image, are NoData areas that are a result of the overlapping 

imagery not capturing a complete view of vegetation from multiple angles. Another thing to notice is the 

relatively limited detail in the tanoak stands, which appear to have high canopy cover and similar 

heights, resulting in a relatively smooth looking canopy surface. The limited amount of detail in the 

canopy surface and the widespread areas of NoData indicate a lack of overlap in the imagery used to 

perform the SfM process. With a greater amount of endlap and sidelap in the input imagery, these data 

voids would be much less widespread and the dimensions of individual trees would be better 

represented in the point cloud and resulting products.  
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Figure 6: Oblique view of SfM-derived point cloud displayed in Metashape.  

We derived CHMs to test whether we could differentiate between individual canopies and create an 

accurate canopy/non-canopy mask. Figure 7 shows the DSM and CHM results derived from an area in 

the eastern part of the AOI, where only a 10 ft. DEM was available to normalize DSM values to above 

ground heights. Figure 8 shows the same thing but in an area in the western part of the AOI where a 3 ft. 

lidar-derived DEM is available. The lower quality of figure 7 is exemplified by the coarser resolution of 

the CHM output as well as the lower level of detail that is apparent in the forested areas. In figure 8, 

changes in canopy height from tree to tree are much easier to identify than in figure 7. The errors in the 

CHM values in both figures are apparent, however. Figure 7 has a low canopy height value of -56 ft., 

while figure 8 has a low canopy height value of -11. This suggests errors in the production of the DSM, as 

each of the CHMs should have a minimum value of 0 when there is bare ground in the display extent.  

 
Figure 7: 2019 Imagery (left), SfM-derived DSM (center), CHM (right); color ramp represents low to high elevations (blue to red). 
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Figure 8: 2019 Imagery (left), SfM-derived DSM (center), CHM (right); color ramp represents low to high elevations (blue to red) 

Creation of new mosaics 
The python script developed for this project successfully creates mosaics without blur by identifying and 

clipping out areas in the individual images that should be NoData and then mosaicking all the resulting 

images for each year. New mosaics were created for each year that data was available. Figure 9 shows 

the difference between the vendor-delivered mosaics and the new mosaics. In the image on the left of 

Figure 9, features are indiscernible due to the blur effect. However, in the image on the right, it is much 

clearer, making the image suitable for classification. 

         

Figure 9: Comparison between the vendor supplied mosaic (left) and the new mosaic created for this project (right). 

Classification results  

Support Vector Machine  

Part of the SVM testing required the identification of the ideal segmentation parameters. We tested 

several different combinations of the input weights (spectral, spatial, minimum segment size) to identify 

the best parameters for the SVM classification, the results of which are attached in Appendix A. The 

parameters that were ultimately selected are as follows: spectral weight set to the maximum value, 20; 

spatial weight set to 15; minimum segment size set to 75 pixels. Figure 10 shows some of the segments 

(yellow polygons) that overlap with Recently Dead Tanoak training data (green dots), the spectral values 

for which were used as input to the SVM tool. Figure 11 shows a subset of the 2019 SVM classification 

results, along with the corresponding imagery and a legend showing which class each color represents. 
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Figure 10: Example of segments (yellow) that overlap with training data (light green dots). 

  

Figure 11: 2019 unclassified image (left) and the 2019 SVM classified image (right). 
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Table 2: Errors summarized for each of the classes for the 2019 SVM classification. 

SVM 2019 classes Error of Omission (%) Error of Commission (%) 

Live Deciduous 8 0 

Live Coniferous 10 18 

Bare Ground 9 33 

Roads 6 21 

Buildings 60 33 

Water 0 0 

Recently Dead Tanoak 8 3 

Other Dead 21 19 

Old Dead Tanoak 29 29 

  Total Accuracy (%) 85 

 

Table 2 shows the errors of omission and commission for the 2019 SVM results. The full error matrix is 

available in Appendix B. The overall accuracy of the SVM results was 85%. The Other Dead and Old Dead 

Tanoak classes had errors of omission (21% and 29%, respectively) and of commission (19% and 29%, 

respectively), which is relatively high but to be expected with two classes that are spectrally similar. The 

error matrix suggests that there were few errors in the prediction of Recently Dead Tanoak. However, 

based on visual interpretation, it does look like some bare ground segments were confused as Recently 

Dead Tanoak, such as the lower right quadrant and top middle portion of figure 11. 

Maximum Likelihood Classification 

This section presents the pixel-based 2019 and 2017 MLC classification results and their corresponding 

accuracy assessments. The two outputs were created using signature files that capture spectral 

information for each land cover class in the training data. Figure 12 shows a subset of the 2019 MLC 

results along with the 2019 imagery, while table 3 provides a summary of the errors of commission and 

omission for the 2019 MLC classification. The complete error matrix is available in Appendix B. The 

overall accuracy of the 2019 MLC results, 69%, is significantly lower than the SVM results, which had an 

overall accuracy of 85%. It should be noted, however, that the total accuracies are negatively impacted 

by the misclassification of certain land cover classes that are of no interest to land managers in this 

context, such as buildings, roads, and bare ground. 
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Figure 12: 2019 Image (left) and the Maximum Likelihood Classification result (right).                      

 Table 3: Errors summarized for each of the classes for the 2019 MLC classification. 

MLC 2019 subset Error of Omission (%) Error of Commission (%) 

Live Deciduous 8 0 

Live Coniferous 10 10 

Bare Ground 36 56 

Roads 6 44 

Buildings 70 57 

Water 0 0 

Recently Dead Tanoak 23 14 

Other Dead 79 0 

Old Dead Tanoak 7 54 

 Total Accuracy (%) 69 

 

The 2017 MLC results were created using the same signature file that was applied to the 2019 image in 

order to test the suitability of having one master training dataset instead of creating a separate training 

dataset for every year, which is time consuming and a requirement for the SVM classification. Figure 13 

shows the image mosaic and classification results for the 2017 MLC iteration, and table 4 shows the 

summarized errors of omission and commission for those results. The total accuracy of the 2017 MLC 

classification is very similar to the 2019 results, and some of the same classes have high rates of error 

(e.g., buildings and bare ground). The error matrix (see Appendix B) indicates that the three dead tree 

classes were primarily confused with bare ground.  

Like the SVM outputs, there are some areas where Recently Dead Tanoak was predicted accurately in 

both the 2017 and 2019 MLC outputs, and others where bare ground was misclassified as Recently Dead 

Tanoak. In figure 12, these misclassified areas of Recently Dead Tanoak (orange) are predominantly in 
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the lower right quadrant of the image. In figure 13, these misclassified areas are largely in the upper 

middle and upper left of the image.  

 

 

Figure 13: 2017 Image Mosaic (left), MLC Classification Result (right) 

Table 4: Errors summarized for each of the classes for the 2017 MLC classification. 

MLC 2017 subset Error of Omission (%) Error of Commission (%) 

Live Deciduous 8 0 

Live Coniferous 0 33 

Bare Ground 30 65 

Roads 40 25 

Buildings 33 0 

Water 0 0 

Recently Dead Tanoak 28 19 

Other Dead 50 38 

Old Dead Tanoak 55 29 

 Total Accuracy (%) 72 

 

Maximum Entropy (MaxEnt) Classification 

The purpose of exploring the MaxEnt classification was to test if this approach would be more time-

efficient than the MLC or SVM approaches.  As with the other tests, the 2019 data were used in order to 

maintain consistency through all the classification methods. Figure 14 shows the MaxEnt output where 

Recently Dead Tanoak was the target class. The result is a classified image showing probability values, 

where warmer colors (reds, oranges, and yellows) indicate a higher probability that the pixel belongs to 

the class that is being predicted. 
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Figure 14: 2019 MaxEnt output for the Recently Dead Tanoak class, where the 
warmer (redder) the color, the more likely it is to be Recently Dead Tanoak. 

Figure 15 shows the results from a second MaxEnt test, in which the target class was the Other Dead 

class, which represents grey dead trees that are not tanoak. One issue that is apparent in each of the 

MaxEnt results is that the general area that overlaps with the training data points are excluded from the 

output probability maps. Only a qualitative visual assessment, not a formal accuracy assessment, was 

performed on this result.   

Figure 15: 2019 MaxEnt output for the Other Dead Trees class, where the 
warmer (redder) the color, the more likely it is the Other Dead Tree class.  

The output for the Other Dead class has generally higher probability values (more green) than the 

Recently Dead Tanoak values, which were more blue, and that is likely because the spectral values 

associated with grey dead trees are more common throughout the study area than the reddish-brown 

signature of Recently Dead Tanoaks.  
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Discussion and Next Steps  
Structure from Motion 
At the outset of this project, SfM seemed like a promising approach to find innovative ways to identify 

symptoms of SOD, and potentially even identify early onset symptoms by detecting slight changes in 

canopy structure. Unfortunately, the quality of the SfM-derived 3D point cloud was compromised by the 

limited sidelap and endlap of the aerial imagery. The point cloud and resulting DSM were riddled with 

gaps, and the canopy surface had limited structural detail that could facilitate the cross-year comparison 

of DSMs or CHMs. Furthermore, at the time of the project, high resolution DEMs were only available for 

a small portion of the western part of the study area, meaning the quality and resolution of any canopy 

height data would be adversely affected. 

In addition to the complications with the SfM-derived data in this specific project, there may be general 

issues with this approach: the consistently high canopy cover and the similar canopy height exhibited in 

tanoak stands could prove detrimental to the production of high quality canopy data (e.g., CHM) that 

would enable a tree-by-tree analysis (e.g., individual tree segmentation). This could potentially be the 

case even if the aerial imagery is collected with the right endlap and sidelap specifications for SfM 

workflows, but we can’t be sure. Because of all these factors, the SfM derived data did not prove useful 

for SOD identification. 

Supervised Classifications 

Each supervised classification that was tested encountered similar issues: bare ground and grey dead 

tree classes were consistently confused with one another due to their similar spectral characteristics, 

and the separation of grey dead tanoak from Other Dead grey trees proved inaccurate. The classification 

algorithm that performed the best was SVM, which had an overall accuracy of 85%. This approach, 

however, also takes the most amount of effort to run for every year because it requires a new training 

dataset and new segments for each annual mosaic. Moreover, it still has relatively high error rates for 

some of the dead tree classes. Any use of this classified data would still require some image 

interpretation to identify areas where dead tanoak and Recently Dead Tanoak were classified 

incorrectly.  

The outputs from the MLC approach were not as promising as those from SVM, as the 2017 and 2019 

overall accuracies were 72% and 69%, respectively. As expected, the old dead tanoak and Other Dead 

classes were consistently confused with one another, and their errors of commission and omission 

reflect this. The Recently Dead Tanoak class was mapped relatively accurately for both 2017 and 2019, 

and the most common class that it is confused with is bare ground. A visual interpretation of some 

areas, however, clearly showed that Recently Dead Tanoak was over predicted in areas of bare ground, 

particularly in areas where the soil looked spectrally similar to the reddish-brown tanoak. Although the 

overall accuracy of the MLC results were not as high as we would have liked, the simplicity and cross-

year applicability of the signature files derived from the training data still make MLC an attractive 

option, especially if the output will be used to guide a more manual image interpretation approach. 

The MaxEnt approach seemed appealing because it is not a classification approach that requires training 

data for all the different land cover types in the study area. It instead ingests a training dataset for a 
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single target class and produces a probability map. But the lack of intuitive input parameters and the 

need to convert all of the high-resolution images to ASCII format is cumbersome. Moreover, the 

probability map outputs would require further post-processing to identify a probability threshold that 

would filter out most of the pixels that don’t belong to the target class.  

Recommendations and Next Steps 
While the SfM workflow was generally unsuccessful for this project, it could potentially be successful in 

the future if aerial imagery is collected with the recommended 80% endlap, 60% sidelap specifications. 

Individual tree segmentation may still not be feasible for tanoak stands, however, due to the tightly knit 

canopies and the apparent even age of tanoaks. Also, a 2019 acquisition of lidar data will complete lidar 

coverage in the study area, meaning that a high resolution DTM will be available for future workflow 

tests (a necessary product to produce CHMs). Although we cannot be certain that high quality SfM-

derived point clouds and subsequent raster products would aid in the monitoring of early onset SOD 

symptoms, we do think that this would be worth exploring in a future project. At the very least, high 

quality DEM and CHM data could facilitate the creation of a relatively accurate forest/non-forest mask 

that could be used to remove false positives in the classifications where bare earth or road pixels are 

classified as dead trees. 

The supervised classification of dead tanoak proved to be difficult due to the frequent misclassification 

of dead trees as bare earth and vice-versa. The differentiation of dead tanoak from Other Dead trees 

was also problematic, as grey dead tanoak are spectrally similar to dead Douglas firs. Because of the 

obvious errors in the classification results, they cannot be used as a final product to quantify SOD 

coverage on a year to year basis. The results can, however, aid in image interpretation and the 

digitization of dead tanoak, especially since bare earth classified as dead trees/tanoak is easy to ignore 

during image interpretation. Furthermore, the potential production of the aforementioned high-

resolution tree/non-tree mask for this study area could greatly improve classification results. 

Deliverables 

The deliverables for this project include a set of exercises that provide step-by-step instructions for (1) 

clipping individual images and creating new mosaics, (2a) creating training data and performing MLC, 

(2b) segmenting imagery and performing SVM, and (3) producing error matrices for an accuracy 

assessment. These exercises, the python script as well as sample imagery and training datasets are 

available here: https://fsapps.nwcg.gov/gtac/CourseDownloads/GeoTASC/FY19/SOD/. All the 

classification results and training data presented in this report will also be shared with cooperators. In 

addition, depending on the usefulness of the material to cooperators, we may provide results from 

earlier classification results not presented in this report, as well as the raster and point cloud outputs 

from the SfM workflow. 

  

https://fsapps.nwcg.gov/gtac/CourseDownloads/GeoTASC/FY19/SOD/
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Appendix A 
SVM Segmentation testing 
This section presents the results from the SVM segmentation results, which were performed to see 

which segmentation parameters produced the best results. Five different sets of parameters were 

tested with the 2019 imagery. The number of training data points collected for the earlier classification 

iterations for this project are greater than the total points used in the classifications presented in the 

Results section. This is because our classification scheme evolved to incorporate different dead tree 

classes, and we had a limited capacity to collect more training points for each of those new classes. 

2019 SVM: 

1. Segmentation parameters- spectral weight: 20, spatial weight: 15, minimum segment size: 50px. 

  

 

  

SVM 201550

Live Deciduous Live Evergreen Bare Ground Road Buildings Water Dead Trees Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 102 12 1 0 0 0 1 116 12 88

Live Evergreen 5 104 1 0 0 0 0 110 5 95

Bare Ground 3 0 62 5 2 2 0 74 16 84

Road 2 0 6 139 18 1 0 166 16 84

Buildings 0 0 2 17 171 1 3 194 12 88

Water 0 0 0 4 0 95 1 100 5 95

Dead Trees 2 0 2 0 5 0 94 103 9 91

Total 114 116 74 165 196 99 99 863

Error of Commission (%) 11 10 16 16 13 4 5 89 Total Accuracy (%)

User's Accuracy (%) 89 90 84 84 87 96 95

R
ef
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Classified Data
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2. Segmentation parameters- spectral weight: 20, spatial weight: 15, minimum segment size: 100px. 

  

 

  

SVM_2015100

Live Deciduous Live Evergreen Bare Ground Road Buildings Water Dead Trees Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 105 10 0 0 0 0 1 116 9 91

Live Evergreen 7 101 0 0 0 0 2 110 8 92

Bare Ground 3 2 66 0 0 2 1 74 11 89

Road 1 0 3 141 21 0 0 166 15 85

Buildings 0 0 5 15 172 1 1 194 11 89

Water 0 1 0 1 2 96 0 100 4 96

Dead Trees 0 5 3 0 2 0 93 103 10 90

Total 116 119 77 157 197 99 98 863

Error of Commission (%) 9 15 14 10 13 3 5 90 Total Accuracy (%)

User's Accuracy (%) 91 85 86 90 87 97 95
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a

Classified Data

3. Segmentation parameters- spectral weight: 20, spatial weight: 15, minimum segment size: 150px. 
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SVM_2015150

Live Deciduous Live Evergreen Bare Ground Road Buildings Water Dead Trees Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 107 8 1 0 0 0 0 116 8 92

Live Evergreen 2 107 0 0 0 0 1 110 3 97

Bare Ground 1 0 69 1 1 1 1 74 7 93

Road 0 0 2 146 16 2 0 166 12 88

Buildings 0 0 3 11 177 2 1 194 9 91

Water 0 0 0 4 2 93 1 100 7 93

Dead Trees 3 5 1 0 2 0 92 103 11 89

Total 113 120 76 162 198 98 96 863

Error of Commission (%) 5 11 9 10 11 5 4 92 Total Accuracy (%)

User's Accuracy (%) 95 89 91 90 89 95 96
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a

Classified Data

4. Segmentation parameters- spectral weight: 20, spatial weight: 15, minimum segment size: 200px. 

 

 

  

SVM_2015200

Live Deciduous Live Evergreen Bare Ground Road Buildings Water Dead Trees Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 111 5 0 0 0 0 0 116 4 96

Live Evergreen 3 106 0 0 0 0 1 110 4 96

Bare Ground 1 0 69 1 1 1 1 74 7 93

Road 0 0 0 147 18 1 0 166 11 89

Buildings 0 0 3 10 176 3 2 194 9 91

Water 0 0 0 4 0 95 1 100 5 95

Dead Trees 0 2 0 0 2 0 97 101 4 96

Total 115 113 72 162 197 100 102 861

Error of Commission (%) 3 6 4 9 11 5 5 93 Total Accuracy (%)

User's Accuracy (%) 97 94 96 91 89 95 95
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5. Segmentation parameters- spectral weight: 20, spatial weight: 20, minimum segment size: 50px. 

 

 

 

SVM_202050

Live Deciduous Live Evergreen Bare Ground Road Buildings Water Dead Trees Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 109 5 0 0 1 0 1 116 6 94

Live Evergreen 8 102 0 0 0 0 0 110 7 93

Bare Ground 2 0 65 2 1 2 2 74 12 88

Road 0 0 2 145 19 0 0 166 13 87

Buildings 0 0 1 18 169 1 5 194 13 87

Water 0 0 0 2 3 94 1 100 6 94

Dead Trees 3 2 2 0 5 0 91 103 12 88

Total 122 109 70 167 198 97 100 863

Error of Commission (%) 11 6 7 13 15 3 9 90 Total Accuracy (%)

User's Accuracy (%) 89 94 93 87 85 97 91

Classified Data
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Appendix B 
This Appendix provides the detailed error matrices that were summarized in the Results section. 

 

 

 

SVM 2019

Live Deciduous Live Coniferous Bare Ground Roads Buildings Water Recently Dead Tanoak Other Dead  Trees Old Dead Tanoak Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 12 0 0 0 0 0 0 0 1 13 8 92

Live Coniferous 0 9 0 0 0 0 0 1 0 10 10 90

Bare Ground 0 0 10 1 0 0 0 0 0 11 9 91

Roads 0 0 0 15 1 0 0 0 0 16 6 94

Buildings 0 1 2 3 4 0 0 0 0 10 60 40

Water 0 0 0 0 0 9 0 0 0 9 0 100

Recently Dead Tanoak 0 0 1 0 0 0 36 2 0 39 8 92

Other Dead  Trees 0 1 2 0 0 0 0 22 3 28 21 79

Old Dead Tanoak 0 0 0 0 1 0 1 2 10 14 29 71

Total 12 11 15 19 6 9 37 27 14 150

Error of Commission (%) 0 18 33 21 33 0 3 19 29 85 Total Accuracy (%)

User's Accuracy (%) 100 82 67 79 67 100 97 81 71

Classified Data
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MLC 2019

Live Deciduous Live Coniferous Bare Ground Roads Buildings Water Recently Dead Tanoak Other Dead  Trees Old Dead Tanoak Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 12 0 0 0 0 0 1 0 0 13 8 92

Live Coniferous 0 9 0 0 0 0 0 0 1 10 10 90

Bare Ground 0 0 7 1 1 0 2 0 0 11 36 64

Roads 0 0 0 15 0 0 0 0 1 16 6 94

Buildings 0 1 1 5 3 0 0 0 0 10 70 30

Water 0 0 0 0 0 9 0 0 0 9 0 100

Recently Dead Tanoak 0 0 8 0 0 0 30 0 1 39 23 77

Other Dead  Trees 0 0 0 6 3 0 1 6 12 28 79 21

Old Dead Tanoak 0 0 0 0 0 0 1 0 13 14 7 93

Total 12 10 16 27 7 9 35 6 28 150

Error of Commission (%) 0 10 56 44 57 0 14 0 54 69 Total Accuracy (%)

User's Accuracy (%) 100 90 44 56 43 100 86 100 46

Classified Data
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MLC 2017 

Live Deciduous Live Coniferous Bare Ground Roads Buildings Water Recently Dead Tanoak Other Dead  Trees Old Dead Tanoak Total Error of Omission (%) Producer's Accuracy (%)

Live Deciduous 12 1 0 0 0 0 0 0 0 13 8 92

Live Coniferous 0 6 0 0 0 0 0 0 0 6 0 100

Bare Ground 0 0 7 0 0 0 3 0 0 10 30 70

Roads 0 0 2 3 0 0 0 0 0 5 40 60

Buildings 0 0 0 1 6 0 0 0 2 9 33 67

Water 0 0 0 0 0 8 0 0 0 8 0 100

Recently Dead Tanoak 0 0 4 0 0 0 13 1 0 18 28 72

Other Dead  Trees 0 1 4 0 0 0 0 5 0 10 50 50

Old Dead Tanoak 0 1 3 0 0 0 0 2 5 11 55 45

Total 12 9 20 4 6 8 16 8 7 90

Error of Commission (%) 0 33 65 25 0 0 19 38 29 72 Total Accuracy

User's Accuracy (%) 100 67 35 75 100 100 81 63 71

Classified Data
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