The Horticulture Behind Phytophthora Management

Steve Tjosvold UC Cooperative Extension Santa Cruz County

June 16, 2015 Managing Phytophthora Workshop

Phytophthora root rot Photo by Ted Swiecki, Phytosphere Photo by Suzanne Lathram, CDFA

Presentation Outline

- The occurrence, severity and spread of Phytophthora diseases are affected greatly by the cultural practices in the nursery.
- Besides sanitation, soil and water management are some of the most important cultural practices to control Phytophthoras. (They are water molds afterall!)
 - Know your soil. Soil physical characteristics affect air and water in a container.
 - Irrigation management and salinity control is important.

So do you get why this happens?

The "Ideal" Container Medium

- Total porosity: 60-75%
- Water volume (after drainage) or "water holding capacity": 50-65%
- Air volume (after drainage) : > 10%
- Water volume available for plant uptake:
 - > 30%

Physical Properties of Selected Media

		19.50	46/5/g
Total Porosity %	93	94	. 73
Water Holding Capacity %	73	81	62
Alr volume %	20	13	. 11
Available water %	48	60	44
	1111		

Measured in a 12 cm tall container (a " 6 inch pot")
Peat +Perlite 1:1 v/v Peat + Vermiculite 1:1 v/v U.C. Mix = 1:1:1 v/v of sand, redwood shavings, peat

Measure total porosity, water holding capacity and air-filled porosity

Which leads back to this

Be careful with:

- Variation in composts
 - Composition and rate of decomposition may vary
- Nitrogen depletion with organic decomposition
- Sludges
 - Fine textures, heavy metals, odor
- Field soil
 - Fine texture, pathogens, weed seeds
- Soil settling
 - Can result in loss of large pores and therefore air

How to schedule irrigations

- When is irrigation needed?
 - When half the available water is used
 - Use a tensiometer
 - Weigh pots
 - Irrigate in morning so leaves can dry quickly.
- How much total water needs to be applied?
 - Replace plant water use
 - Compensate for salinity
 - Compensate for poor irrigation distribution

Available water is the pot's fuel tank capacity

Substrate	Water-holding Available water capacity (% vol) (% vol)		
Peat:perlite (1:1)	51	41	
Peat:vermiculite (1:1)	81	62	
UC mix (1 sand : redwood sawdust : 1 peat)	52'	43	
Elder sandy loam	23	13	
Baywood loamy sand	13	8	
Watsonville loam	37	16	

Decide when to water

- Weigh pots daily
 - change in grams during a 24-hr period represents milliliters of water lost per day by evapotranspiration.
- Irrigate when half of the available water is used.
- Conveniently, that is the amount of water to apply with some adjustments

Manage Irrigation Schedule

- How much total water needs to be applied?
 - Replace plant water use
 - Compensate for salinity
 - Compensate for poor irrigation distribution

Salts accumulate in the substrate between irrigations. Half of water used Salts concentrate $EC = EC_{explied}$ $EC = EC_{explied}$ $EC = EC_{explied}$ $EC = EC_{explied}$ $EC = EC_{explied}$

Manage salinity by applying the appropriate leaching fraction.

- Leaching fraction = $\frac{\text{Volume of water leached}}{\text{Volume of water applied}}$
- To select leaching fraction, divide EC_{applied} by tolerable leachate EC.
 - Most crops tolerate leachate EC of 6 dS/m to 9 dS/m.
 - Salt-sensitive crops tolerate 3 dS/m.

See handout

Manage Irrigation Schedule

- How much total water needs to be applied?
 - Replace plant water use
 - Compensate for salinity
 - Compensate for poor irrigation distribution

Adjust irrigation volume to meet plant needs and leach.

- Apply enough to replace evapotranspiration
- 255
- Correct for the leaching fraction (e.g., add another 84 mL if LF = 0.25)

+ 84 mL 339 mL

Correct for distribution uniformity (divide total above by DU)

565 mL

$$\frac{\text{ET+LF}}{\text{DU}} = \frac{339}{0.6} = 565$$

Correction for the water quality and a low DU may require more water than the plant does!

Conclusions

- The occurrence, severity and spread of Phytophthora diseases are affected greatly by the cultural practices in the nursery.
- Besides sanitation, soil and water management are some of the most important cultural practices to control Phytophthoras. (They are water molds afterall!)
 - Know your soil. Soil physical characteristics affect air and water in a container.
 - Irrigation management and salinity control is important

http://anrcatalog.ucdavis.edu