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a b s t r a c t

An isolated outbreak of the emerging forest disease sudden oak death was discovered in Oregon forests in
2001. Despite considerable control efforts, disease continues to spread from the introduction site due to
slow and incomplete detection and eradication. Annual field surveys and laboratory tests between 2001
and 2009 confirmed a total of 802 infested locations. Here, we apply two invasive species distribution
models (iSDMs) of sudden oak death establishment and spread risk to target early detection and control
further disease spread in Oregon forests. The goal was to develop (1) a model of potential distribution that
estimates the level and spatial variability of disease establishment and spread risk for western Oregon,
and (2) a model of actual distribution that quantifies the relative likelihood of current invasion in the
quarantine area. Our predictions were based on four groups of primary parameters that vary in space
and time: climate conditions, topographical factors, abundance and susceptibility of host vegetation, and
dispersal pressure. First, we used multi-criteria evaluation to identify large-scale areas at potential risk
of infection. We mapped and ranked host abundance and susceptibility using geospatial vegetation data
developed with gradient nearest neighbor imputation. The host vegetation and climate variables were
parameterized in accordance to their epidemiological importance and the final appraisal scores were
summarized by month to represent a cumulative spread risk index, standardized as five categories from
very low to very high risk. Second, using the field data for calibration we applied the machine-learning
method, maximum entropy, to predict the actual distribution of the sudden oak death epidemic. The
dispersal pressure incorporated in the statistical model estimates the force of invasion at all suscepti-

ble locations, allowing us to quantify the relative likelihood of current disease incidence rather than its
potential distribution. Our predictions show that 65 km2 of forested land was invaded by 2009, but further
disease spread threatens more than 2100 km2 of forests across the western region of Oregon (very high
and high risk). Areas at greatest risk of disease spread are concentrated in the southwest region of Oregon
where the highest densities of susceptible host species exist. This research identifies high priority loca-
tions for early detection and invasion control and illustrates how iSDMs can be used to analyze the actual
versus potential distribution of emerging infectious disease in a complex, heterogeneous ecosystem.
. Introduction
The rapid spread of invasive organisms and emerging infectious
iseases is one of the most important ecological outcomes from
he drastic alteration of natural environments by human activities
Vitousek et al., 1996; Foley et al., 2005). In our highly globalized
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world, only few habitats have been spared from the detrimental
impacts of biological invasions on biodiversity, community struc-
ture, nutrient cycling, or ecosystem productivity (Mack et al., 2000;
Hoffmeister et al., 2005). In managed landscapes, human-induced
invasions of exotic organisms and pathogens cause enormous eco-

nomic losses by threatening our efforts to sustain agricultural
production and maintain healthy forest ecosystems (Daszak et al.,
2000; Pimentel et al., 2000). Despite intense preventive actions,
invaders manage to affect extensive landscapes often due to slow
and incomplete discovery of invasion outbreaks. As early detection
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rucially enhances the efficacy of invasion control and eradication
reatments (Simberloff, 2003), there is an increasing need for pre-
ictive tools that identify the current geographic extent of invasion
pread and the habitats at potential risk of invasion (Thuiller et al.,
005; Franklin, 2010).

Predicting the spatial distribution of invaders and pathogens is
normously challenging in heterogeneous environments. However,
pecies distribution models (SDMs) that characterize the ecologi-
al niche of organisms and relate it to known environmental factors
ave provided an effective analytical framework for predicting the
pread of biological invasions (e.g., Lippitt et al., 2008; Chytry et al.,
009; Strubbe and Matthysen, 2009). To develop invasive species
istribution models (iSDMs), two approaches have been gener-
lly adopted, although their distinction has often been unclear in
he literature. First, researchers predict the potential distribution
f a biological invasion by identifying locations with environmen-
al conditions potentially suitable for growth and reproduction, in
hich the invader could exist (Hirzel and Le Lay, 2008; Jeschke and

trayer, 2008). Second, researchers estimate the actual distribution
f a biological invasion by identifying areas where the invader cur-
ently exists, constrained not only by environmental factors but
lso by colonization time lag and dispersal limitations (Soberon,
007; Jimenez-Valverde et al., 2008). While the first approach has
een used to target various ecosystems potentially threatened by

nvasive organisms and diseases (Meentemeyer et al., 2004; Lippitt
t al., 2008), or to understand the behavior of invaders in novel
andscapes (Peterson et al., 2003; Sutherst and Bourne, 2009), the
econd approach is essential for quantifying the actual range of
nvasions and predicting their extant consequences in specific envi-
onments (Meentemeyer et al., 2008a; Václavík and Meentemeyer,
009). Although knowledge from both types of spatial models can
e extremely useful for guiding the management of biological inva-
ions, no studies to date have used both approaches simultaneously
o prioritize landscape contexts for early detection surveillance and
nvasion control.

In this study, we model and map the potential and actual dis-
ribution of sudden oak death (SOD) disease in western Oregon.
n isolated outbreak of this emerging forest disease, caused by the

nvasive plant pathogen Phytophthora ramorum, was discovered in
regon forests in 2001 (Hansen et al., 2008), more than 200 km from

he closest documented infection in Humboldt County, California.
. ramorum causes significant mortality of tanoak (Notholithocarpus
ensiflorus) and oak (Quercus spp.) trees and infects a wide range
f other plant species, such as Oregon myrtle (Umbellularia cali-
ornica), Pacific rhododendron (Rhododendron macrophyllum), and
vergreen huckleberry (Vaccinium ovatum), considerably altering
he composition and structure of forest communities and chang-
ng ecosystem processes (Meentemeyer et al., 2008b; Cobb et al.,
010; Davis et al., 2010). The disease symptoms are expressed in
wo distinct forms, either as lethal infections in canker hosts that
erve as epidemiological dead-ends or as non-lethal infections in
oliar hosts that produce large amounts of infectious spores on
ecrotic leaves (Garbelotto et al., 2003; Rizzo and Garbelotto, 2003).
hese spores are passively transmitted among individual trees and
orest patches via rain-splash and wind-driven rain (Davidson et
l., 2005), affecting considerable forest area with susceptible host
pecies and favorable environmental conditions.

In contrast to relatively wide distribution throughout Califor-
ia, the pathogen occurs in Oregon only in one small area in
urry County near the town of Brookings (Kanaskie et al., 2009a).
espite substantial control efforts consisting of cutting and burning
nfected and potentially exposed host plants, and applying herbi-
ide to prevent tanoak sprouting, P. ramorum continues to spread
rom the initial infested sites (Hansen et al., 2008; Kanaskie et al.,
009b). In 2007, SOD quarantine area was extended to current
20 km2 due to the emergence of six new outbreaks found out-
nagement 260 (2010) 1026–1035 1027

side the original 65 km2 quarantine boundary. The abrupt disease
expansion is attributed to several consecutive years of unusually
wet and warm weather that promotes long distance dispersal of
the pathogen (Davidson et al., 2005; Rizzo et al., 2005). However, it
is believed that the major reason why control activities have been
only partially successful is the late discovery of disease outbreaks,
which propagated across forested landscapes before typical disease
symptoms were recognized and infected sites treated (Goheen et
al., 2009; Kanaskie et al., 2009c).

Successful containment of SOD depends heavily on early detec-
tion, so the pathogen can be destroyed before it can intensify
and spread. Aerial surveys searching for dead and dying trees
are good detection tools but their effectiveness largely depends
on the degree of latency of disease symptoms. Field surveys and
stream baiting with subsequent laboratory analyses can detect an
infestation in a very early stage but represent labor intensive and
costly methods. Predictive risk models thus offer important alter-
natives for prioritizing areas for early detection and eradication
treatments. Although predictive models of P. ramorum establish-
ment and spread have been developed and used in California
(Meentemeyer et al., 2004, 2008a), similar modeling has been lim-
ited in Oregon due to unavailable vegetation data. This situation
now has been remedied by new spatial vegetation data (Ohmann
and Gregory, 2002; Ohmann et al., 2007) that allow us to map host
susceptibility characteristics across Oregon forests.

Here, we present spatial predictions of P. ramorum establish-
ment and spread risk that are being actively used to target early
detection and control further disease spread in Oregon forests. The
goal of this study was to develop two predictive models: (1) a model
of potential distribution that estimates the level and spatial variabil-
ity of P. ramorum establishment and spread risk in six ecoregions
in Oregon, and (2) a model of actual distribution that quantifies
the relative likelihood of P. ramorum current invasion in the SOD
quarantine area. Our predictions are based on GIS analysis of four
groups of primary parameters that vary in space and time: climate
conditions, topographical factors, abundance and susceptibility of
host vegetation, and dispersal pressure. First, we built a heuris-
tic model using multi-criteria evaluation (MCE) method to identify
large-scale areas at potential risk of disease infection. Second, using
extensive field data for model calibration and calculation of disper-
sal pressure we applied the machine-learning method, maximum
entropy (MAXENT), to predict the actual distribution of the sud-
den oak death epidemic. Spatially explicit models of potential and
actual distribution of P. ramorum invasion in Oregon are urgently
needed to provide a better picture of forest resources threatened
by this destructive pathogen.

2. Methods

2.1. Field data collection

To examine factors influencing the spatial distribution of inva-
sion probability of P. ramorum, we collected field data over the
span of nine years throughout heterogeneous habitat conditions
in southwest Oregon. The early detection program was coordi-
nated by the Oregon Department of Forestry and the USDA Forest
Service year-round since 2001, using a combination of fixed-wing
and helicopter surveys and ground-based checks (Goheen et al.,
2006; Kanaskie et al., 2009c). Each year, the forest landscape in
southwest Oregon was systematically scanned from a helicopter to

look for signs of dead or dying trees, covering the majority of the
tanoak host type. Cases, in which apparent crown mortality was
discovered, were recorded and mapped using sketch maps and the
Global Positioning System (GPS), and followed by thorough field
inspections. All mapped sites with tree mortality were visited and
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Table 1
Spread scores of host species based on their potential to spread inoculum of P.
ramorum.

Hosts Score

Arbutus menzeisii—Pacific madrone 1
Arctostaphylos spp.—Manzanita 1
Frangula californica—California buckthorn 1
Frangula purshiana—Pursh’s buckthorn 1
Notholithocarpus densiflorus—Tanoak 10
Lonicera hispidula—Pink honeysuckle 1
Pseudotsuga menziesii—Douglas-fir 1
Quercus chrysolepis—Canyon live oak 0
Quercus kelloggii—Black oak 0
Rhododendron spp.—Rhododendron 5
Rubus spectabilis—Salmonberry 1
028 T. Václavík et al. / Forest Ecology a

valuated on the ground, although the difficulty in accessing some
reas due to rugged terrain and other accessibility obstacles occa-
ionally delayed field visits. Additional ground-based surveys were
onducted in areas with known host vegetation because detect-
ng P. ramorum from the air is impossible when the symptoms
re restricted to necrotic lesions on leaves and twigs or external
leeding on the trunks of infected live trees with healthy-appearing
oliage. Transect surveys were used to check for symptomatic vege-
ation in potential timber sale areas, along roadsides, popular hiking
rails, and high-use campgrounds. Extensive watershed-level mon-
toring was done both inside and outside the quarantine area using
tream baiting with tanoak and rhododendron leaves, followed
y surveys to locate infected plants when stream baits detected
. ramorum (Sutton et al., 2009). Symptomatic host plants were
hecked for infection by: (1) isolating and transferring symptomatic
issue directly onto plates with a selective media for Phytophthora
pecies, and (2) analyzing samples in Oregon State University and
regon Department of Agriculture laboratories via traditional cul-

uring and a polymerase chain reaction (PCR)-based molecular
ssay, using primers designed to amplify P. ramorum DNA (Ivors
t al., 2004; Goheen et al., 2006). Through these procedures, we
btained a reliable set (n = 802) of confirmed locations for plants
nfected by P. ramorum between 2001 and 2009.

.2. Host species mapping

We restricted our modeling area to six ecoregions in western
nd central Oregon that have susceptible host species and environ-
ental conditions that can potentially harbor P. ramorum: Coast

ange, Willamette valley, Klamath mountains, Western Cascades,
ast Cascades-north, and East Cascades-south (Fig. 1). To map and
ank susceptibility and distribution of P. ramorum hosts, we used
eospatial vegetation data developed using gradient nearest neigh-
or (GNN) imputation (Ohmann and Gregory, 2002; Ohmann et al.,
007; Pierce et al., 2009). The GNN method applies direct gradient
nalysis (canonical correspondence analysis) and nearest neigh-
or imputation to ascribe detailed ground attributes of vegetation
o each pixel in a regional landscape. We developed GNN species

odels for each of the six ecoregions in western and central Ore-

on in which P. ramorum hosts occur. Field plot data consisted of
anopy cover of plant species recorded on several thousand field
lots installed in regional inventory, ecology, and fuel mapping
rograms. Spatial explanatory variables were measures of climate,
opography, parent material, and geographic location. The result-

ig. 1. Study area: six ecoregions in western Oregon that have susceptible host
pecies and climate conditions potentially suitable for establishment and spread of
. ramorum.
Sequoia sempervirens—Redwood 3
Umbellularia californica—Oregon myrtle 5
Vaccinium ovatum—Evergreen huckleberry 1

ing GNN models are 30-m-resolution GIS rasters, in which each cell
value is associated with codes of individual species and their abun-
dances (percent cover). We extracted abundance data for 14 host
species present in the study area (Table 1).

2.3. Climate and topography surfaces

We quantified a set of three climate and three topographical
variables that play an important role in the establishment and
spread of sudden oak death disease. To map weather conditions
known to affect foliar plant pathogens (Woods et al., 2005), we
derived 30-year monthly averages (1971–2001) of maximum tem-
perature, minimum temperature, and precipitation characteristics
from the parameter elevation regression on independent slopes
model (PRISM; Daly et al., 2001). PRISM uses point measurements
from a large sample of weather base stations and combines them
with digital terrain data, coastal proximity, vertical mass layering,
and other factors to spatially interpolate climate variability across
large landscapes. We used 800 m resolution grids for each month in
the rainy season (December to May) that represents the reproduc-
tive period for P. ramorum in California and Oregon (Davidson et
al., 2005). We also derived three topographic variables: elevation,
topographic moisture index (TMI), and potential solar irradiation
(PSI) from the U.S. Geological Survey 30-m digital terrain model.
The TMI describes the effect of topography on local moisture avail-
ability and was calculated as the natural log of the ratio between the
upslope contributing drainage area and the slope gradient of a grid
cell (Moore et al., 1991). The PSI characterizes the potential mean
solar irradiation and was calculated for the rainy season using the
cosine of illumination angle on slope equation (Dubayah, 1994).

2.4. Model of potential distribution

We developed a heuristic (rule-based) iSDM model using multi-
criteria evaluation (MCE) method (Malczewski, 1999; Jiang and
Eastman, 2000; Mendoza and Martins, 2006) to identify the areas
at potential risk of P. ramorum establishment and spread in western
Oregon. Following methods described in Meentemeyer et al. (2004)
for California, expert input was used to assign a weight of relative
importance to each predictor variable and rank the criterion range
to standardize the data and determine the magnitude and direction
of their effect on potential disease spread.
2.4.1. Ranking host vegetation
We compiled vegetation data to create a host index variable

calculated in the GIS by summing the products of the species abun-
dance score and spread score in each 30 m cell. To generate the
species abundance score, the percent canopy cover of each species
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Table 2
Range of values and assigned scores (R), ranked 0–5 from least to most suitable for
establishment and spread of P. ramorum.

Rank Precipitation (mm) Average maximum
temperature (◦C)

Average minimum
temperature (◦C)

5 >125 18–22 –
4 100–125 17–18; 22–23 –
3 75–100 16–17; 23–24 –
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Table 3
Importance weights (W) assigned to predictor variables, ranked 1–6 from lowest to
highest importance for P. ramorum (according to Meentemeyer et al., 2004).

Variable Weight

Host species index 6
2 50–75 15–16; 24–25 –
1 25–50 14–15; 25–26 >0
0 <25 <14; >26 <0

as linearly reclassified into ten abundance classes using equal
nterval classification scheme. To generate the species spread score,
ndividual host species were scored from 0 to 10 according to their
otential to produce inoculum and spread the disease to other hosts
Table 1). With minor changes to account for specific disease behav-
or in Oregon (Hansen et al., 2008), we followed the scoring scheme
reviously developed by Meentemeyer et al. (2004) for SOD risk
odel for California. Tanoak was assigned the highest score of 10

s it is the most affected species (Goheen et al., 2006; Kanaskie
t al., 2009c) and predominant sporulating host in Oregon forests
Hansen et al., 2008). Tanoak is susceptible to both foliar and stem
nfection and is associated with high severity infections in mixed
edwood-tanoak and evergreen forest associations (Maloney et al.,
005). Oregon myrtle was scored moderately high (5) because the
oliar infection on this host produces significant amounts of inocu-
um that spreads to other host vegetation in the form of zoospores
nd sporangia (Davidson et al., 2005; Rizzo et al., 2005). Sev-
ral landscape epidemiological studies in California consistently
bserved positive correlation between the presence of Oregon
yrtle and P. ramorum infection (Kelly and Meentemeyer, 2002;

ondeso and Meentemeyer, 2007; Meentemeyer et al., 2008a), but
his host appears to play a less important role in the epidemiolog-
cal system in Oregon (Hansen et al., 2008). Rhododendron species

ere also scored moderately high (5) as they are susceptible to
oth foliar and branch infection, and are widely distributed in the
nderstory of mixed evergreen and coniferous forests in Oregon
Goheen et al., 2006). Redwood (Sequoia sempervirens) was given

score of 3 because the production of sporangia from its foliar
nfestation is limited but the species is often present in association

ith more susceptible tanoak (Maloney et al., 2005). The remaining
pecies that are susceptible to foliar infection and provide transmis-
ion pathways for the pathogen were assigned a value of 1. Both
pecies of oaks were scored 0, as they represent terminal-hosts in
he epidemiological system and their potential to spread inoculum
s minimal (Davidson et al., 2005). The final host index values were
inearly rescaled into five standard ranks (0–5).

.4.2. Ranking climate factors
We ranked precipitation and temperature conditions using

hreshold values from Meentemeyer et al. (2004) based on pub-
ished knowledge of P. ramorum biophysical properties gained from
aboratory tests and field studies (Table 2). Since water must be
vailable on plant surfaces for a substantial period of time (6–12
onsecutive hours) before infection is initiated (Garbelotto et al.,
003; Tooley et al., 2009), precipitation represents a significant lim-

ting factor for P. ramorum. We assigned the highest score (5) to
reas with an average monthly precipitation greater than 125 mm,
eing the most suitable for disease establishment and inoculum
roduction. Lower scores (4–1) were given to progressively lower

ainfall amounts, while areas receiving less than 25 mm of rain-
all were given a score of 0. Laboratory experiments demonstrated
hat P. ramorum thrives best at mild temperatures between 18 and
2 ◦C, while infection rates decrease to less than 50% at tempera-
ures below 12 ◦C and above 30 ◦C (Werres et al., 2001; Garbelotto
Precipitation 2
Maximum temperature 2
Minimum temperature 1

et al., 2003; Englander et al., 2006; Tooley et al., 2009). There-
fore, we assigned the areas with an average maximum temperature
between 18 and 22 ◦C the highest rank of 5. Areas with maximum
temperatures outside the most suitable range were given progres-
sively lower scores. Although little is known about the effect of
minimum temperature on infection rates, P. ramorum is intoler-
ant to temperatures below freezing (Rizzo and Garbelotto, 2003;
Browning et al., 2008). Areas with average minimum temperatures
above freezing (0 ◦C) were assigned a score of 1 and areas with
average minimum temperatures below freezing a score of 0.

2.4.3. Developing heuristic model
We summarized the final appraisal scores for western Oregon

to represent a cumulative spread risk index that was subsequently
standardized into five risk categories from very low risk to very high
risk. Each predictor variable (criterion), ranked between 0 and 5 to
encode the suitability for disease establishment and spread, was
assigned a weight according to the estimated relative importance
of the variable in the epidemiological system (Table 3). Using the
weights and scores of vegetation and climate parameters, the final
spread risk was computed for each grid cell by finding the sum of
the product of each ranked variable and its weight, divided by the
sum of the weights:

S̄ =
∑n

i WiRij∑n
j Wi

(1)

where S̄ is the appraisal score (spread risk) for a grid cell, Wi
is the weight of the ith predictor variable, and Rij is the rank,
or score, of the jth value of the ith variable. We computed the
equation for each month in the pathogen’s reproductive season
(December–May) and averaged the six monthly maps into one
cumulative spread risk index. This risk model represents a potential
distribution of P. ramorum in western Oregon based on site suitabil-
ity for disease establishment and inoculum production, without
considering pathogen’s dispersal pressure or human-mediated
forms of spread.

2.5. Model of actual distribution

We developed a statistical iSDM model using maximum entropy
(MAXENT) to estimate the actual distribution of P. ramorum infec-
tions within the 2008 quarantine area in southwest Oregon.
MAXENT is a machine-learning method that predicts the distri-
bution of an organism by finding the probability distribution of
maximum entropy (i.e., the closest to uniform) that respects a set
of constraints derived from sample locations. The constraints are
represented by simple functions of environmental predictor vari-
ables, with their means required to be close to the empirical average
of occurrence sites (Phillips et al., 2006; Phillips and Dudik, 2008).

This method has been shown to perform well in comparison with
other algorithms that utilize presence-only data to predict species
distributions (Elith et al., 2006; Elith and Graham, 2009; Václavík
and Meentemeyer, 2009).
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.5.1. Developing statistical model
We split the total of 802 field samples of confirmed P. ramo-

um infection chronologically into three datasets. The 2005–2008
ataset (n = 482) was used to calibrate the relative likelihood of
urrent invasion based on the relationship between the field obser-
ations of disease occurrence and 21 predictor variables including
hree climate factors (maximum temperature, minimum temper-
ture, precipitation), three topographical factors (elevation, TMI,
SI), abundance of 14 host species (listed in Table 1), and a disper-
al pressure variable. The dispersal pressure term was computed
ith the 2001–2004 dataset (n = 218) to quantify the relative force

f invasion at all locations in the study area (Hastings et al., 2005;
eentemeyer et al., 2008a) and thus force the MAXENT model to

redict the actual or current distribution of the pathogen rather
han its potential distribution (Václavík and Meentemeyer, 2009).

e used a cumulative distance metric that incorporates disper-
al limitations in iSDMs without explicitly estimating the dispersal
haracteristics of the organism (Allouche et al., 2008). The cumu-
ative distance (Di) summed the inverse of the squared Euclidean
istances dik between each potential source of invasion k (con-
rmed between 2001 and 2004) and target plot i (sampled between
005 and 2008):

i =
N∑

k=1

(
1

(dik)2

)
(2)

Such a distance-constraining factor is crucial for discriminating
he actual distribution from the potential distribution of biolog-
cal invasions, as it accounts for restrictive forces that prevent
nvasive species from colonizing habitats environmentally favor-
ble but remote from already invaded locations (Václavík and
eentemeyer, 2009; Lobo et al., 2010). If dispersal pressure was

mitted, then all sites that are environmentally similar to those
lready invaded, would be modeled as actual distribution, yielding
onsiderable over-predictions.

Utilizing the MAXENT software version 3.2.1, we iteratively
eighted each predictor variable to maximize the likelihood to

each the optimum probability distribution, and used the logis-
ic output to ensure a predicted range between 0 and 1 (Elith
nd Burgman, 2003; Phillips and Dudik, 2008). We selected 500
terations for model convergence and employed the regularization
rocedure that prevents overfitting better than variable-selection
ethods commonly used in traditional statistical models (Phillips

nd Dudik, 2008). In addition, we used a jackknife test of the relative
ontribution to model gain to get insight into the relative impor-
ance of individual explanatory variables (Phillips et al., 2006).

.6. Evaluating the models

Since the potential distribution is a hypothetical concept that
efers to locations which could be infested by the forest pathogen
ased on suitable environmental factors, the heuristic model can-
ot be rigorously assessed with the use of field presence/absence
ata (Chefaoui and Lobo, 2008; Václavík and Meentemeyer, 2009;
obo et al., 2010). As an alternative, we can examine the correspon-
ence between the predicted risk levels and infested locations and
ompare it to risk levels at randomly distributed points. We used
he GIS to generate the same number of random points as the num-
er of confirmed locations (n = 802) and ran a T-test to identify the
egree to which predicted potential distribution differs between

nvaded and random sites.

The actual distribution refers to locations where the pathogen

ost likely exists at a specific time, as constrained by environ-
ental and dispersal limitations. The performance of the statistical
odel thus can be rigorously evaluated with field data. The 2009

et of confirmed infections (n = 102) was set aside from the model
nagement 260 (2010) 1026–1035

development process to be used as an independent dataset for val-
idation. Samples that were collected and tested in laboratory in
2009 but were negative for infection were used as absences in cal-
culating the accuracy statistics. However, we included only those
(n = 34) located further than 200 m from known confirmed sites to
account for scale on which the disease is known to be clustered
(Condeso and Meentemeyer, 2007) and thus avoid potential false
negative cases. We compiled these datasets and used the area under
the curve (AUC) of the receiver operating characteristics (ROC) to
examine the true positive rate as a function of the false positive
rate at each possible probability threshold predicted by the model
(Fielding and Bell, 1997; Pontius and Schneider, 2001; Hirzel et
al., 2006). We also calculated omission and commission error rates
at the threshold that maximized specificity and sensitivity of the
statistical model (Jimenez-Valverde and Lobo, 2007; Freeman and
Moisen, 2008).

3. Results

3.1. Predicted geographic patterns of potential invasion

The model of potential distribution predicts the level and spa-
tial variability of P. ramorum establishment and spread risk in six
ecoregions in Oregon (Fig. 2). Nearly 252 km2 (0.2%) of western
and central Oregon’s 111,694 km2 of land area was predicted as
very high risk for disease spread (Table 4). Very high risk habitats
occur in the southwest portion of the study area, mostly in the
Coast Range ecoregion within 50 km from the Pacific Ocean. They
are patchily distributed across the valleys of Chetco River, Wheeler
Creek, Pistol River, Rogue River, Elk River, Sixes River, and their trib-
utaries. Very high risk was generally identified over relatively small
areas (mean patch size = 0.9 hectares) nested within larger areas of
high risk and coinciding with the highest abundances of the most
important host species: tanoak, rhododendron, and Oregon myrtle.
The very high risk levels occur most frequently in Curry County, in
which they encompass a total of 243.3 km2 (5.8% of county). Three
other counties (Coos, Douglas, and Josephine) include very high risk
habitats, although these habitats cover only 0.1% of each county
area.

Nearly 1865 km2 (1.7%) of the study area was mapped high risk.
High risk habitats form slightly more continuous stretches (mean
patch size = 2.1 ha) along river valleys of the Coast Range and the
western part of the Klamath Mountains ecoregion. Although highly
concentrated in the southwest portion of the state, high risk areas
extend north in small patches along the coast to the Umpqua River
and its tributaries in Douglas County. The majority of continuous
areas predicted as high risk occur in Curry County, in which it
encompasses a total of 1333.3 km2 (31.8% of county area). These
areas coincide with suitable climate conditions of high moisture
availability and relatively warm temperatures in large continuous
areas of susceptible forest vegetation. High risk habitats are typi-
cally mixed evergreen forests including redwood and Douglas fir
but with tanoak as a dominant or co-dominant species. Rhododen-
dron and evergreen huckleberry often occur in the understory of
these forest communities. Larger areas of high risk were also iden-
tified in Coos County (210.1 km2; 5.1% of county area) and Josephine
County (290.9 km2; 6.9% of county area).

Over 4216 km2 (3.8%) of the study area was mapped moder-
ate risk. Moderate risk habitats are scattered across southern half
of the Coast Range ecoregion and western part of the Klamath

Mountains but extends in smaller amounts to the Western Cas-
cades ecoregion. In the two counties with the largest moderate risk
prediction, Curry County (1084.1 km2; 25.8% of county area) and
Josephine County (1021.7 km2; 25.8% of county area), moderate risk
was mapped mostly in habitats with climatically suitable condi-
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ig. 2. Predicted spread risk map for P. ramorum in western Oregon based on heuris
pread risk levels.

ions but with lower values of host vegetation index. In the Klamath
egion, it forms a buffer-like pattern around high risk areas. In the
estern Cascades ecoregion, moderate risk occurs in small patches
mean patch size = 1.5 ha) and extends to Oregon’s northern bound-
ry, following the patchy distribution of rhododendron species in
ouglas-fir dominated forest communities.

able 4
and area of predicted spread risk levels in Oregon counties (in km2 and percent of total c

County Area (km2) Very low risk Low risk

km2 % km2 %

Benton 1758 0.0 0.0 1738.3 98
Clackamas 4866 114.0 2.3 4652.6 95
Clatsop 2083 0.0 0.0 2077.0 99
Columbia 1693 0.0 0.0 1693.4 100
Coos 4135 0.0 0.0 3161.3 76
Curry 4195 0.0 0.0 1534.8 36
Deschutes 4688 4683.8 99.9 4.5 0
Douglas 13,088 1027.5 7.9 11,304.5 86
Hood River 1347 504.0 37.4 826.2 61
Jackson 7248 2307.1 31.8 4936.3 68
Jefferson 1723 1644.8 95.5 71.5 4
Josephine 4240 66.1 1.6 2858.4 67
Klamath 15,846 15,769.2 99.5 62.9 0
Lake 8353 8334.2 99.8 0.0 0
Lane 11,938 913.6 7.7 10,651.5 89
Lincoln 2520 0.0 0.0 2513.5 99
Linn 5980 313.9 5.2 5541.1 92
Marion 3092 76.1 2.5 2981.2 96
Multnomah 1125 0.0 0.0 1121.3 99
Polk 1927 0.0 0.0 1926.6 100
Tillamook 2832 0.0 0.0 2832.2 100
Wasco 3274 2954.1 90.2 299.7 9
Washington 1881 0.0 0.0 1881.4 100
Yamhill 1860 0.0 0.0 1860.2 100

Total 111,694 38,708.4 34.7 66,530.4 59
odel of potential distribution. The inset shows southwest counties with the highest

Over 66,530 km2 (59.6%) of western Oregon was mapped low
risk and 38,708 km2 (34.7%) of the area was mapped very low

risk. Low risk habitats are generally larger in area (mean = 65.3 ha)
and extend over a vast portion of the northern part of the Coast
Range ecoregion and the entire Willamette Valley ecoregion. Low
risk is often associated with moderately suitable temperature and

ounty area).

Moderate risk High risk Very high risk

km2 % km2 % km2 %

.9 2.8 0.2 0.0 0.0 0.0 0.0

.6 77.4 1.6 0.0 0.0 0.0 0.0

.7 0.0 0.0 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 0.0

.5 759.5 18.4 210.1 5.1 3.8 0.1

.6 1084.1 25.8 1333.3 31.8 243.3 5.8

.1 0.0 0.0 0.0 0.0 0.0 0.0

.4 726.8 5.6 28.0 0.2 1.3 0.0

.3 17.1 1.3 0.0 0.0 0.0 0.0

.1 4.4 0.1 0.1 0.0 0.0 0.0

.1 0.0 0.0 0.0 0.0 0.0 0.0

.4 1021.7 24.1 290.9 6.9 3.5 0.1

.4 0.0 0.0 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 0.0

.2 370.8 3.1 2.5 0.0 0.0 0.0

.7 6.4 0.3 0.0 0.0 0.0 0.0

.7 105.0 1.8 0.0 0.0 0.0 0.0

.4 34.4 1.1 0.0 0.0 0.0 0.0

.7 3.4 0.3 0.0 0.0 0.0 0.0

.0 0.1 0.0 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 0.0

.2 2.8 0.1 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 0.0

.6 4216.7 3.8 1864.9 1.7 251.9 0.2
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3.3. Model evaluation

The T-test for the model of potential distribution showed that
modeled risk is significantly higher at sites identified as infested
between 2001 and 2009 (n = 802) than at randomly selected loca-
ig. 3. Predicted actual distribution of P. ramorum in southwest Curry County based
ap (b) shows presence/absence realization of actual distribution based on probab

oisture conditions but low abundance and susceptibility of host
egetation. The low risk level was predicted over more than 95%
f Benton, Clackamas, Clatsop, Columbia, Lincoln, Marion, Mult-
omah, Polk, Tillamook, Washington, and Yamhill counties. Very

ow risk habitats form nearly one large area in both East Cas-
ades ecoregions but extend west in several large patches (mean
atch size = 37 km2) to the Western Cascades and Klamath Moun-
ains ecoregions. Very low risk areas occur further from the coast
>150 km) at higher elevations (>1200 m) with cold temperatures
nd low precipitation. There are no hosts species mapped in 77%
f the very low risk areas and only species with low abundance
nd susceptibility (mostly Douglas fir) are mapped in the remain-
ng 23%. The very low risk levels were predicted over nearly 100%
f Deschutes, Jefferson, Klamath, Lake, and Wasco counties.

.2. Predicted geographic patterns of actual invasion

The model of actual distribution predicts the relative likelihood
f P. ramorum current invasion in the 2009 quarantine area in Curry
ounty (Fig. 3a). Using the threshold that maximized model effec-
iveness, we estimated pathogen’s presence across 65.4 km2 of land
rea in southwest Curry County, northwest of the town of Brook-
ngs in the Chetco River watershed (Fig. 3b). All areas predicted as
eing infected occur within 15 km of the Pacific coast. Two areas
ith the highest likelihood of infection occur at the lower sec-

ion of Chetco River between Joe Hall Creek and Ferry Creek, and
cross the valley hillsides of North Fork Chetco River and its trib-
taries Mayfield Creek and Bravo Creek. Outside of the watershed,
large patch of forest predicted by the model occurs north of the

own of Brookings between Ram Creek and Shy Creek. Two loca-
ions, modeled as being likely infected but in which disease has not
een confirmed to date, were identified along Jack Creek and Jor-

on Creek in the southern portion of the Chetco River watershed
nd between Houstenade Creek and Miller Creek in the northwest
art of the quarantine area. These locations are relatively close to
nown infected sites (∼4 km) and coincide with areas mapped as
aving high abundances of tanoak and evergreen huckleberry.
aximum entropy model. Map (a) shows relative likelihood of pathogen’s presence.
reshold that maximized specificity and sensitivity of the model.

The jack-knife test of variable importance (Fig. 4) shows that
the variable with the highest gain when used in the model in iso-
lation was dispersal pressure, having the most useful information
that contributes to final prediction. Similarly, the dispersal pressure
term decreased the model gain the most when it was omitted, hav-
ing the most variability that is not present in other predictors. After
the dispersal pressure variable, precipitation, maximum tempera-
ture, and elevation followed in their relative importance for model
gain. From all 14 host species used for prediction, evergreen huck-
leberry, tanoak, and Douglas-fir were identified in the respective
order as being the most important for model gain.
Fig. 4. Jack-knife test of variables’ relative importance. Graph shows seven most
important environmental variables and their influence on regularized model gain
when they were used in isolation or omitted.
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Table 5a
Model evaluation. Potential distribution: T-test of sites infected by P. ramorum versus
random sites in predicted risk levels.

T-test (P < 0.0001)

Risk level Infected sites (n = 802) random sites (n = 802)

# % # %

Very high 53 6.6 4 0.5
High 386 48.1 19 2.4
Moderate 131 16.3 24 3.0
Low 232 28.9 463 57.7
Very low 0 0.0 292 36.4

Table 5b
Model evaluation. Actual distribution: evaluation statistics for Maxent model cal-
culated with 2009 samples.

Infected sites in 2009 (n = 102)
Uninfected sites in 2009 (n = 34)

AUC 0.911
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Threshold 0.124
Commission error (rate) 6 (0.18)
Omission error (rate) 13 (0.13)

ions (P < 0.0001) (Table 5a). Most of the 802 infected sites were
apped high risk (48%), followed by low risk (29%), moderate risk

16%), very high risk (7%), and very low risk (0%). Most of the 802
andom locations were mapped as low risk (58%), followed by very
ow risk (36%), moderate risk (3%), high risk (2%), and very high risk
1%).

The ROC test for the model of actual distribution produced the
UC value of 0.91 based on the data from 136 samples analyzed in
009 (Table 5b). The optimal probability threshold based on max-

mizing sensitivity and specificity of the model was relatively low
t = 0.124) and produced commission and omission error rates of
.18 and 0.13 respectively.

. Discussion

Mapping the geographic distribution of invasive species and dis-
ases is essential for the examination of their impacts in natural
cosystems and implementation of effective management strate-
ies (Holdenrieder et al., 2004). Predictive, spatial tools that identify
urrent extent of biological invasions and habitats at potential risk
f spread are increasingly needed to guide the management of bio-
ogical invasions (Simberloff, 2003; Plantegenest et al., 2007). In this
tudy, we developed two predictive models of P. ramorum potential
nd actual distribution in western Oregon to prioritize landscape
ontext for early detection surveillance and invasion control.

The heuristic model of P. ramorum potential distribution
dentifies areas that can serve as potential habitats for disease
stablishment and propagation. Mapped risk is based on com-
ined effects of host species availability and susceptibility, and
limate conditions in the pathogen’s major reproductive season
December–May). Based on the model criteria, our prediction indi-
ates that numerous forests across the western region of Oregon
ace considerable risk of sudden oak death invasion. Although con-
entrated in the southwest part, very high and high risk habitats
ere mapped across the entire Curry County and identified at

maller scale in Coos and Josephine counties, more than 150 km
way from the currently quarantined areas. This result corrobo-
ates findings of previous studies (Meentemeyer et al., 2004, 2008a)

nd suggests that P. ramorum is in relatively early stage of invasion,
ccupying only a small portion of its fundamental ecological niche.

The levels of P. ramorum establishment and spread risk agree
losely with predictions from an equivalent model of potential
istribution developed for California (Meentemeyer et al., 2004).
nagement 260 (2010) 1026–1035 1033

Although our estimates for Oregon are based on GNN vegetation
data that differ from those used as inputs for modeling in Califor-
nia (CALVEG dataset; USDA Forest Service RSL, 2003), predicted risk
levels align considerably well across the border region of north-east
California and south-west Oregon. Several discrepancies in risk lev-
els (moderate risk in Del Norte County, high risk across the state
border in Curry County) are caused by higher susceptibility ranking
of tanoak and lower susceptibility ranking of Oregon myrtle in our
model, based on documented differences in the epidemiological
role of these species in Oregon (Hansen et al., 2008). Consider-
ing the similarity of environmental conditions and a prevalence of
redwood-tanoak forests in northern California, we suggest the risk
model developed for California may be slightly under-estimating
the potential risk of P. ramorum invasion in the northernmost
region.

The significant T-test suggests the risk model produced plau-
sible predictions; however, 29% of currently infected sites were
mapped as low risk. This type of underprediction is likely associated
with the accuracy and precision of host vegetation data used as the
most important criterion in model building. First, the 30 m spatial
resolution of our vegetation data may be coarser than the scale at
which the disease occurs. High resolution aerial photographs indi-
cate there are small patches of host species that were mapped as
non-host or no forest vegetation because these patches are smaller
than the minimal mapping unit of the GNN data. Secondly, the
GNN species distributions consist of a single field plot imputed to
each pixel, resulting in species maps with small amounts of noise
at a local scale. This fine-scale heterogeneity poses no significant
problems for regional-scale analyses but may cause some infected
locations to overlay with scattered pixels representing no host in
the vegetation data and thus low risk in the predicted risk model.
Lastly, a non-forest mask was applied to the vegetation model based
on maps of ecological systems developed by the USGS Gap Anal-
ysis Program. There are 23 infected locations in close vicinity of
the town of Brookings that overlap with pixels classified as low
density or open space development in the vegetation model. In
addition, “spread risk” in this model is defined as the potential to
produce inoculum and further propagate the disease across land-
scape. Therefore, it places low importance to terminal hosts (e.g.,
oaks) that may get invaded for a short period of time but serve as
epidemiological dead-ends (Rizzo and Garbelotto, 2003; Davidson
et al., 2005).

The MAXENT model of P. ramorum actual distribution quanti-
fies the relative likelihood of disease infection calculated with data
from the 2001–2008 field surveys. Mapped invasion is based on
the statistical relationship between known infected sites and a set
of climate, topographical, host availability, and dispersal pressure
variables. Model predictions suggest that current invasion range
covers approximately 15% of the current quarantine area. Locations
with the highest relative likelihood of pathogen’s presence occur
along the Chetco River and its north fork, matching field observa-
tions of disease incidence. However, several places with no field
observations were predicted as likely infected and thus indicate
felicitous targets for early detection surveys.

The AUC value above 0.9 and low values of commission and
omission error rates (<0.2) suggest relatively high prediction accu-
racy of the statistical model. However, the optimal threshold that
maximized model effectiveness was relatively low and reflects the
difficulty of predicting invasive organisms far from equilibrium
with their environment (Václavík and Meentemeyer, 2009). As the
motivation was to prioritize landscape contexts for early detec-

tion and invasion control, we selected a threshold that gives the
same weight to commission and omission errors, in order to bal-
ance the importance of detecting the maximum number of infected
sites with the relative cost of ground and helicopter surveillance
(Meentemeyer et al., 2008a). If commission errors were preferred,
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he model would produce a conservative scenario, decreasing the
robability to detect disease outbreaks. If omission errors were
referred, large areas with marginal likelihood of P. ramorum pres-
nce would be predicted, increasing the cost of unnecessary field
ampling.

Predictions of the statistical model were highly correlated with
emperature and moisture conditions, elevation, and abundance of

ajor host species. However, the most important variable based
n jack-knife test of model gain was dispersal pressure, represent-
ng the force of pathogen’s invasion. Considerably stronger effect
f dispersal pressure is in contrast with results of Ellis et al. (2010)
hat identified environmental factors to be slightly more important
han force of invasion for determining the spatial pattern of P. ramo-
um in northern California. Again, our findings indicate that the
athogen is in an initial stage of invasion, and are consistent with
revious studies that recognized incorporation of range-confining
ariables based on space or distance metrics to be essential for
redicting organisms under colonization-lag and non-equilibrium
cenarios (Araujo and Pearson, 2005; Allouche et al., 2008; De
arco et al., 2008; Václavík and Meentemeyer, 2009). The early

tage of invasion is also supported by the fact that dispersal pres-
ure was significant for model prediction, although it was based
n simple cumulative distance from initially invaded sites and did
ot account for potential landscape connectivity (Ellis et al., 2010)
r long distance human-mediated forms of spread (Cushman and
eentemeyer, 2008).
In this study, we applied a heuristic and statistical model in

he GIS to produce spatial predictions of the potential and actual
istribution of P. ramorum invasion in Oregon forests. Several stud-

es have mapped potential SOD risk at a state (Meentemeyer et
l., 2004) or continental scale (Venette and Cohen, 2006; Kelly
t al., 2007) and identified actual patterns of disease spread in
alifornia (Meentemeyer et al., 2008a). However, this is the first
ffort to model P. ramorum invasion in Oregon and use both iSDM
pproaches simultaneously, while clearly distinguishing between
heir meanings and purposes. While estimates of potential distri-
ution provide a better picture of forests potentially threatened
y disease invasion, the model of actual distribution quantifies the
urrent range at unsampled locations. Application of the actual dis-
ribution model to on-the-ground management will increase the
fficacy of detection and eradication of current outbreaks, espe-
ially under conditions of limited resources. Application of the
otential distribution model will allow identifying habitats at the
ighest risk of future disease spread, to which preventive mea-
ures can be applied. When resources are available, field monitoring
f high risk habitats will increase the chance to detect outbreaks
ntroduced via long-distance dispersal events and minimize future
isease impacts. Therefore, complementary knowledge from both
ypes of spatial models is crucially needed to guide monitoring and
ontrol activities, especially for organisms in early stages of inva-
ion that have considerable mismatch between their fundamental
nd realized niche.

iSDMs are getting increasingly popular to tackle early detec-
ion and eradication problems. However, models of potential and
ctual distribution are often confused and have never been used
imultaneously for the same organism. In this application, we
eveloped a heuristic model based on current knowledge of P.
amorum physiological and epidemiological requirements to rep-
esent its fundamental niche (potential distribution). We applied a
tatistical model trained by field data to portray pathogen’s realized
iche (actual distribution) and included data on dispersal pressure

o constrain predicted range (Allouche et al., 2008; Václavík and

eentemeyer, 2009). Although much remains to be learned about
ossibilities to control further P. ramorum spread, these spatially
xplicit models provide simple yet effective management tools to
rioritize landscape contexts for early detection and eradication
nagement 260 (2010) 1026–1035

of disease outbreaks. As new infected sites are discovered, mod-
els should be updated and validated with new data to continually
refine management strategies. This research illustrates how the
iSDM framework can be used to analyze the actual versus potential
distribution of emerging infectious disease in a complex, heteroge-
neous ecosystem.
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