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|. Rule-Based Modeling

* incorporates epidemiological and
biological factors driving
establishment and spread in
California plant communities

- Host susceptibility
- Host epidemiology
- Moisture

- Temperature




Parameterizing the Model

o Scored 5 variables to encode
magnitude & direction of their
effect on disease spread

April
Minimum
Temperature

16.7C/621F

141C/66F

Variables
* Host species abundance
* Precipitation
e Relative Humidity

e Maximum Temperature
 Minimum Temperature



May
SOD Spread Risk

Model Results

Seasonal Changes: December - Ma
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Meentemeyer et al. 2004 (Forest Ecology & Management)
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Rule-Based Modeling

Strengths

e simple methods
« works well with limited data on pathogen survival and transmission

Limitations

* too simple
 may not reflect real field conditions
 risk-based (not probabilistic) and static
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ll. Statistical Modeling

&0

» based on observed relationships
between pathogen occurrence, host
composition, and environmental : -
conditions [ e

40

20

Example Methods : 200 100 o0

- RegreSSion} require presence &
_CART absence data
- Neural Networks

» once a model is developed, can apply
Its equation across mapped variables
in a GIS




.o 2003-2004 Results

oo B O Random locations
» extensive dataset on distribution "% & Lo A Detected
P. ramorum o WA
N
e within high-risk forests, we have }&w ’1
surveyed 495 random locations TN el

e P. ramorum detected at 33 of the "-{% |
495 sites. - L SRS

¥o u,
e
n=9 of 139 in 2003 Cacems \¥
n = 24 of 347 in 2004 S e ¢
i -xq‘un._.f e !
» 20 km was farthest detection ‘-}% ’5 &l



Defining the
Analysis Region

 mapped COMTF sites

e imited to areas < 20 km of
confirmed infection sites

e yielded 166 random sites
from survey

2

0

Kilometers
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°* P.ramorum pr
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Bay Laurel Presence

Predictor Variables

e Population pressure
e Climate conditions
* Fire history

* Presence of bay laurel

& tanoak

e Distance to known infection



Statistically-Based Model

o
~

Logistic Regression (r? =0.51)

Distance (-) p=0.0000
Pop. pressure (+) p=0.0001
Bay laurel (+) pP=0.0002
Precipitation (+) p=0.0001
Pop. pressure x Precip. p=0.0001

Eliminated Variables

Min. & Max. Temperature
123456172829 10;11213141516171819202122232425 Relat|ve Hum|d|ty
stance (km ) .

Fire History

Tanoak presence

Probability
o
w




Statistically-Based Model

5000

-

40001 n = 166 sites

Logistic Regression (r? =0.51)

Distance (-) p=0.0000
Pop. pressure (+) p=0.0001
Bay laurel (+) pP=0.0002
Precipitation (+) p=0.0001
Pop. pressure x Precip. p=0.0001

Eliminated Variables

Min. & Max. Temperature

: ; Relative Humidity
Absent Present Fire History

P. ramorum Tanoak presence
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Application and Legend
. . . ~~~ County lines
Simulation in GIS g
[ o-o00s5
. [Joos-0.10
« Mapped all variables at 50 x 50 m —
. . . . [ Jo15-020
* logistic regression was applied to B 0:20-0.25
each variable to produce a map =§j§§j§j§§

of occurrence probability (0-1)

» used Monte Carlo simulation to
predict distribution across
unsampled regions

« a random number (0-1) generated for
each cell and compared to logistic
probability

e cell infected if random number lower than

probability of infection .‘
* higher the predicted probability the more likely . ,

the random number will fall below that probability
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Statistical Modeling

g0

&0

Strengths

» established methods like regression

40

20

e empirical relationships across study system e
facilitate ecological and epidemiological ef v Twws LT

understanding

Limitations

e susceptible sites have not yet been exposed (distance
variables partially offset this)

» probabilistic, but still static (not dynamic)

* need dynamic models of establishment and spread
driven by weather events and dispersal vectors



lll. Cellular Automata Modeling

» powerful approach for modeling Spread of a Wildfire
processes driving establishment

& spread

 may conduct repeatable non-
destructive experiments at large
scales

- effect of extreme weather
- efficacy of management practices

* requires parameterization of system
components across a grid and
specified time steps (e.g. 1hr, 1day)



System Components of P. ramorum

HOST

POTENTIAL VECTORS

i

DISEAS

Moisture
Mild temps

P. ramorum
PATHOGEN ENVIRONMENT



System Components

In the model

S*P*T*|*H
D

I:)t+1 ~

P = Probability of infection

S = Host susceptibility

T = Temperature

P = Precipitation

| = Surrounding disease levels
D = Distance

H = Human vectors




Model Approach

* Probability of infection
modeled for each cell based
on system components

— Number between zero and one

Model landscape

Time step 1
0.08 | 0.21 | 0.11 o) 0
0 0.15 | 0.50 | 0.01 0
0.04 | 0.02 | 0.13 | 0.18 0
042 0 |0.26 | 0.06 | 0.22
0 0.26 0 |0.04 0




Model Approach

Probability of infection

modeled for each cell based

on system components
— Number between zero and one

Weighted random process

— Generate random numbers
between zero and one

Model landscape

Time step 1
0.08 | 0.21 | 0.11 0 0
0.15 | 0.23 | 0.79
0 0.15 | 0.50 | 0.01 0
0.10 | 0.52 | 0.34
0.04 | 0.02 | 0.13 | 0.18 0
0.07 | 0.86 | 0.25 | 0.97
0.42 0 0.26 | 0.06 | 0.22
0.64 0.29 | 0.11 | 0.73
0 0.26 0 0.04 0
0.84 0.12




Model Approach

* Probability of infection
modeled for each cell based
on system components

— Number between zero and one

« Weighted random process

— Generate random numbers
between zero and one

 Compare probabillity to
random numbers
— Infected — Probability > Random
— Probability < Random
— No host vegetation (0)

Model landscape

Time step 1
|
0.08 | 0.21 | 0.11 0 0
0.15 | 0.23 | 0.79
0 0.50 | 0.01 0
0.52 | 0.34
0.04 | 0.02 | 0.13 | 0.18 0
0.07 | 0.86 | 0.25 | 0.97
0.42 0 0.26 | 0.06 | 0.22
0.64 0.29 | 0.11 | 0.73
0 0.26 0O [(0.04 0
0.84 0.12




Model Approach

Probability of infection

Model landscape

modeled for each cell based Time step 1
on system components
— Number between zero and one 0 10
Weighted random process 0
— Generate random numbers .
between zero and one 0
Compare probability to
random numbers 0 | 0
— Infected — Probability > Random
— Probability < Random 0 0

— No host vegetation (0)

Outputs disease intensity as
count of times cell is infected



Model Approach

Probability of infection

Model landscape

modeled for each cell based Time step 2
on system components

— Number between zero and one 0
Weighted random process 0

— Generate random numbers

between zero and one

Compare probability to

random numbers 0 | 0 | O
— Infected — Probability > Random
— Probability < Random 0 0 0

— No host vegetation (0)

Outputs disease intensity as
count of times cell is infected

Iterates on a weekly time step



Model Approach

Probability of infection
modeled for each cell based
on system components

— Number between zero and one

Weighted random process

— Generate random numbers
between zero and one

Compare probability to
random numbers
— Infected — Probability > Random

— Probability < Random
— No host vegetation (0)

Outputs disease intensity as
count of times cell is infected

Iterates on a weekly time step

Model landscape
Time step 3

0




Model Approach

Example Simulation
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Model Approach

Example Simulation

invasive

Introduction |—p | establishment e dispersal —

spread




Mapping and Parameterizing
System Components

Hostsusceptibility Diseaselevels %

e g i e s
- o s e

Temperature Distance
Precipitation - Human vectors

Spatial Grain = 250 m cells
Time Step = 1 week



Host Susceptibility

Parameterization

Host Index (S) Ak st e

| .. | 7 [ EREE

Meentemeyer et al. 2004 i ¢
Ranked susceptibility of each ) ﬂ;ﬁf
species SO TR Y
Using CALVEG data, each cell BN
received a composite score EM T
based on susceptibility rank b Y

and abundance of all species oy Yy
present PN, o
Output scaled to 100 points N | W

]

Mo Haoat Wagelation Mapped

S*P*T*|*H L

.I']'w)

IDt+l ~



Weather Events

Mapping Methods

e Dalily precip & temp at NCDC-NOAA point locations
* Integrate point data with long-term average grids (PRISM)
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Mean Dec Precip (PRISM)

Temp 12.01.1992
NCDC Base Stations

Hunter & Meentemeyer (in press) J. Appl. Meteor.
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PRECIPITATION
March 21, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.




PRECIPITATION
March 22, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.




PRECIPITATION
March 23, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.




PRECIPITATION
March 24, 1998

San §
Framcisea

200

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 25, 1998

San |
Framcisea

Hunter & Meentemeyer (in press)
J. Appl. Meteor.
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Hunter & Meentemeyer (in press)
J. Appl. Meteor.



Weather Events

Parameterizing Temperature o
B 1200 1
« Davidson et al. (2005) lab studies € ool
— Measured zoospore production on bay :
— 7 set temps, 2 trials, 2 sets of 10 leaves each trial LI
e In the model o
— Average 2 trials 2w
— Fit curvilinear equation, scaled to 10 point scale § 20
» Coded into model using weekly mean, max daily i
5 10 15 20 25
Mean zoospores vs. temperature 1400
900 . B
800 //\ § 12001
o] \ [
£ 7
’ ’ ° Tempe:fture((:) * ® ” § 200 1
0 y y y - v
* * * * 5 10 15 20 25
P ~ S P T I H Temperature (°C)

t+1 D Davidson et al. 2005 Phytopathology



Weather Events

Parameterizing Precipitation

Garbelotto / Davidson
studies

— 9-12 hrs of leaf moisture
required for significant
Infection

In the model

— Rainy days are >2.5 mm
precip

— Assume linear relationship
between potential sporulation
and # of wet days per week

— Scale # of wet days per week
to 10 point scale

10-pt Score

[
o

Scores for Rainy Days / Week

o =N w N~ o » ~ [e oI {e)
I I I I I I

..|I|“

Rainy days per week (>2.54 mm precip)

S*P*T*|*H
D

I:)t+1 ~




Dispersal distance

Mapping Methods

o Straight-line

distance to
nearest infected
site

» Recalculated for
each time step




Dispersal distance

Mapping Methods

o Straight-line

distance to
nearest infected
site

» Recalculated for
each time step




Dispersal distance

Mapping Methods

o Straight-line

distance to
nearest infected
site

» Recalculated for
each time step




Dispersal distance

Mapping Methods

o Straight-line

distance to
nearest infected
site

» Recalculated for
each time step




Dispersal distance

Oregon — Hansen

Parameterization 2
« 2 distance decay
studies are being :
explored .
° Model |S program med | 'N NDist:nceqf/TomrLPrevqi/ouS(Tnfection((bm)
California — Meentemeyer
based on these curves
and other potential |
curves
S*P*T*|*H '2
I:)t+1 ~ D o




Surrounding disease levels (1)

 Assumption: higher pathogen abundance in surrounding cells increases
chance of infection

e |nthe model

— Output an index of pathogen abundance at each time step
l.e. the count that each cell has been infected

— To account for surrounding disease levels, sum the counts within a 1250m
rectangle and scale to 10 pts

250m 21510 P—
0/{1(0|0|0
0 0
S R P~ S*P*T*I*H
0/0]1]0]0 = 8 t+1 =~ D
00|00} O
0/ 0|0j21]0
Output from previous example Output of surrounding pathogen

abundance for an individual cell



Potential long-distance vectors

Mapping Methods

humans/km?2

e P.ramorum disperses
locally through several
physical pathways
— l.e. rain splash, wind-driven

rain, stream water
 Human activity poses
highest risk for long-
distance dispersal

 Human population density
within 50km radius areas

source: U.S. Census Bureau (2000) { \



Potential long-distance vectors (H)

Parameterization

Logistic regression

Response variable
— Presence/absence

— Statewide foliar survey data
(Meentemeyer) n=166

Determine relationship between
pop density and infection
probability while controlling for
host vegetation and climate

Scale probabilities to 10 point
scale for integration with other
parameters

S*P*T*|*H
[%+1:: [)

Population Density (humans/km?)

K%L

=y

population rés“tme
Opulation, g

500?

{.

4008},—:"
"\:... L

3000 -

2000 A

10001 &L

Q Hilome|
1

0

0 AHSent \\{ ‘\Presen\/
P.ramorum



Applying the model




Example model run

 Initiated spread with a
single infected cell

— Large patch of highly
susceptible vegetation
near Big Sur

e |nitiated in 1985

— Weekly time step
through Dec 2003
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Model Evaluation

« Compare output maps
with observed disease
distribution

— Run model 10 times

— Assess predicted vs.
observed infected area
within 100 5k blocks

« Evaluate magnitude and
direction of error and
determine predictive
accuracy

e Conduct sensitivity
analysis of parameters




Additional research questions

* Test hypotheses about dispersal and
Infection processes

— Influence of weather events
— Simulate management scenarios




Significance

 Critical for predicting and
slowing the spread of P.
ramorum and other
Invasive species

— Incorporate spatial and
temporal heterogeneity of
environmental conditions
Into spread modeling

— Focus management efforts
on high-risk landscapes

— Test alternate
management scenarios




