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I. RuleI. Rule--Based ModelingBased Modeling
• incorporates epidemiological and 
biological factors driving   
establishment and spread in 
California plant communities

- Host susceptibility
- Host epidemiology
- Moisture
- Temperature



• Scored 5 variables to encode 
magnitude & direction of their 
effect on disease spread 

ParameterizingParameterizing the Modelthe Model

• Host species abundance
• Precipitation
• Relative Humidity

• Maximum Temperature
• Minimum Temperature

VariablesVariables



Model ResultsModel Results
Seasonal Changes: December - May

Meentemeyer et al. 2004  (Forest Ecology & Management)



Cumulative Risk:  December - May

Meentemeyer et al. 2004  (Forest Ecology & Management)

Model ResultsModel Results



Strengths
• simple methods
• works well with limited data on pathogen survival and transmission

Limitations
• too simple
• may not reflect real field conditions
• risk-based (not probabilistic) and static

RuleRule--Based ModelingBased Modeling



II. Statistical ModelingII. Statistical Modeling
• based on observed relationships 
between pathogen occurrence, host 
composition, and environmental  
conditions

- Regression
- CART
- Neural Networks

Example Methods

• once a model is developed, can apply 
its equation across mapped variables  
in a GIS

require presence &
absence data



Response VariableResponse Variable

• extensive dataset on distribution
P. ramorum

• within high-risk forests, we have
surveyed 495 random locations
(2003-2004)

• P. ramorum detected at 33 of the
495 sites.

n = 9 of 139 in 2003 
n = 24 of 347 in 2004

• 20 km was farthest detection

Random locations
Detected

2003-2004 Results



• P. ramorum present
at 33 sites

• limited to areas < 20 km of
confirmed infection sites  

• yielded 166 random sites
from survey  

• mapped COMTF sites

Defining the Defining the 
Analysis RegionAnalysis Region



Predictor VariablesPredictor Variables

Population Pressure
(humans/km2)

2950

0

3901 mm / 154 in

48 mm /  2 in

Annual Precipitation
Minimum Temperature
(Dec – Feb)

9.9 C / 49.8 F

-17.3 C / 0.9 F         

Maximum Temperature
(Dec – May)

27.0 C / 80.6 F

-1.8 C / 28.8 F         

31 %

83 %

Relative Humidity
(Dec – May)Fire since 1950Bay Laurel Presence

• Population pressure

• Climate conditions

• Fire history

• Presence of bay laurel 
& tanoak

• Distance to known infection



Eliminated Variables
Min. & Max. Temperature
Relative Humidity
Fire History
Tanoak presence

Distance (-) p=0.0000
Pop. pressure (+)             p=0.0001
Bay laurel (+)                    p=0.0002
Precipitation (+)               p=0.0001
Pop. pressure x Precip.   p=0.0001

Logistic Regression (r2 =0.51)
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Absent Present
P. ramorum
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Eliminated Variables
Min. & Max. Temperature
Relative Humidity
Fire History
Tanoak presence

Distance (-) p=0.0000
Pop. pressure (+)             p=0.0001
Bay laurel (+)                    p=0.0002
Precipitation (+)               p=0.0001
Pop. pressure x Precip.   p=0.0001

Logistic Regression (r2 =0.51)

n = 166 sites

0

1000

2000

3000

4000

5000

StatisticallyStatistically--Based ModelBased Model



Application andApplication and
Simulation in GISSimulation in GIS

• Mapped all variables at 50 x 50 m
• logistic regression was applied to
each variable to produce a map
of occurrence probability (0-1)

• used Monte Carlo simulation to
predict distribution across
unsampled regions

• a random number (0-1) generated for
each cell and compared to logistic
probability

• cell infected if random number lower than
probability of infection

• higher the predicted probability the more likely
the random number will fall below that probability 



Strengths
• established methods like regression
• empirical relationships across study system 
facilitate ecological and epidemiological 
understanding

Limitations
• susceptible sites have not yet been exposed (distance 
variables partially offset this)

• probabilistic, but still static (not dynamic)
• need dynamic models of establishment and spread 
driven by weather events and dispersal vectors

Statistical ModelingStatistical Modeling



III. Cellular Automata ModelingIII. Cellular Automata Modeling

Spread of a Wildfire• powerful approach for modeling 
processes driving establishment
& spread

• may conduct repeatable non-
destructive experiments at large
scales

- effect of extreme weather
- efficacy of management practices

• requires parameterization of system
components across a grid and
specified time steps (e.g. 1hr, 1day) 



System Components of System Components of P. ramorumP. ramorum

HOST

PATHOGEN ENVIRONMENT
P. ramorum

DISEASE

>20 plant spp., 12 families

Moisture
Mild temps

POTENTIAL VECTORS



System ComponentsSystem Components

P = Probability of infection

S = Host susceptibility
T = Temperature 
P = Precipitation
I = Surrounding disease levels
D = Distance
H = Human vectors

D
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In the model



Model ApproachModel Approach
• Probability of infection 

modeled for each cell based 
on system components 
– Number between zero and one

Model landscape
Time step 1
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Model ApproachModel Approach
Model landscape
Time step 1
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• Weighted random process
– Generate random numbers 

between zero and one

• Probability of infection 
modeled for each cell based 
on system components 
– Number between zero and one



Model ApproachModel Approach
Model landscape
Time step 1

0.15
0.10

0.50
0.52

0.13
0.25

0.18
0.97

0.06
0.11

0.02
0.86

0.26
0.29

0.42
0.64

0.11
0.79

0.01
0.34

0.04
0.07

0.08
0.15

0.21
0.23

0.22
0.73

0.04
0.12

0.26
0.84

0

0

0 0

0

0

00

0

• Weighted random process
– Generate random numbers 

between zero and one

• Compare probability to 
random numbers
– Infected – Probability > Random
– Uninfected – Probability < Random
– No host vegetation (0)

• Probability of infection 
modeled for each cell based 
on system components 
– Number between zero and one
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Model ApproachModel Approach
• Probability of infection 

modeled for each cell based 
on system components 
– Number between zero and one

Model landscape
Time step 1
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• Weighted random process
– Generate random numbers 

between zero and one

• Compare probability to 
random numbers
– Infected – Probability > Random
– Uninfected – Probability < Random
– No host vegetation (0)

• Outputs disease intensity as 
count of times cell is infected

0 0

0 0

0

0 0

0

00

0 0



Model ApproachModel Approach
• Probability of infection 

modeled for each cell based 
on system components 
– Number between zero and one

• Weighted random process
– Generate random numbers 

between zero and one

• Compare probability to 
random numbers
– Infected – Probability > Random
– Uninfected – Probability < Random
– No host vegetation (0)

• Outputs disease intensity as 
count of times cell is infected
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• Iterates on a weekly time step



Model ApproachModel Approach
• Probability of infection 

modeled for each cell based 
on system components 
– Number between zero and one

• Weighted random process
– Generate random numbers 

between zero and one

• Compare probability to 
random numbers
– Infected – Probability > Random
– Uninfected – Probability < Random
– No host vegetation (0)

• Outputs disease intensity as 
count of times cell is infected
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Model ApproachModel Approach

invasive 
spreadintroduction establishment dispersal

Example Simulation



Model ApproachModel Approach

invasive 
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Example Simulation



Model ApproachModel Approach

invasive 
spreadintroduction establishment dispersal

Example Simulation



Model ApproachModel Approach

invasive 
spreadintroduction establishment dispersal

Example Simulation



Mapping and Mapping and ParameterizingParameterizing
System ComponentsSystem Components

Host susceptibility
Temperature 
Precipitation

Disease levels
Distance

Human vectors

Spatial Grain = 250 m cells
Time Step = 1 week



Host SusceptibilityHost Susceptibility

Host Index (S)
• Meentemeyer et al. 2004
• Ranked susceptibility of each 

species
• Using CALVEG data, each cell 

received a composite score 
based on susceptibility rank 
and abundance of all  species 
present

• Output scaled to 100 points

D
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Parameterization



Weather EventsWeather Events

• Daily precip & temp at NCDC-NOAA point locations
• Integrate point data with long-term average grids (PRISM)

Mean Dec Precip (PRISM)
NCDC Base Stations 

Precip 12.01.1992

Hunter & Meentemeyer (in press) J. Appl. Meteor.
Temp 12.01.1992

Mapping Methods



PRECIPITATION
March 20, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 21, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 22, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 23, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 24, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 25, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



PRECIPITATION
March 26, 1998

Hunter & Meentemeyer (in press)
J. Appl. Meteor.



Weather EventsWeather Events

• Davidson et al. (2005) lab studies
– Measured zoospore production on bay
– 7 set temps, 2 trials, 2 sets of 10 leaves each trial

• In the model
– Average 2 trials
– Fit curvilinear equation, scaled to 10 point scale

• Coded into model using weekly mean, max daily
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Weather EventsWeather Events

• Garbelotto / Davidson 
studies 
– 9-12 hrs of leaf moisture 

required for significant 
infection

• In the model
– Rainy days are >2.5 mm 

precip
– Assume linear relationship 

between potential sporulation
and # of wet days per week

– Scale # of wet days per week 
to 10 point scale

Scores for Rainy Days / Week
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Dispersal distanceDispersal distance

• Straight-line 
distance to 
nearest infected 
site

• Recalculated for 
each time step

Mapping Methods
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Dispersal distanceDispersal distance

• Straight-line 
distance to 
nearest infected 
site

• Recalculated for 
each time step

Mapping Methods



Dispersal distanceDispersal distance

• 2 distance decay 
studies are being 
explored

• Model is programmed 
based on these curves 
and other potential 
curves
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Surrounding disease levels (I)Surrounding disease levels (I)
• Assumption: higher pathogen abundance in surrounding cells increases 

chance of infection
• In the model

– Output an index of pathogen abundance at each time step
i.e. the count that each cell has been infected

– To account for surrounding disease levels, sum the counts within a 1250m 
rectangle and scale to 10 pts
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Potential longPotential long--distance vectorsdistance vectors

• P. ramorum disperses 
locally through several 
physical pathways
– i.e. rain splash, wind-driven 

rain, stream water

• Human activity poses 
highest risk for long-
distance dispersal

• Human population density 
within 50km radius areas

3000

0

humans/km2

source: U.S. Census Bureau (2000)

Mapping Methods



Potential longPotential long--distance vectors (H)distance vectors (H)

• Logistic regression
• Response variable

– Presence/absence
– Statewide foliar survey data 

(Meentemeyer) n=166

• Determine relationship between 
pop density and infection 
probability while controlling for 
host vegetation and climate

• Scale probabilities to 10 point 
scale for integration with other 
parameters

Parameterization

Absent Present

P. ramorum

Po
pu

la
tio

n 
D

en
si

ty
 (h

um
an

s/
km

2 )

population pressure

0

1000

2000

3000

4000

5000
p=0.0001

D
HITPS ****P 1t ≈+



Applying the modelApplying the model



Example model runExample model run
• Initiated spread with a 

single infected cell 
– Large patch of highly 

susceptible vegetation 
near Big Sur

• Initiated in 1985
– Weekly time step 

through Dec 2003
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Model EvaluationModel Evaluation

• Compare output maps 
with observed disease 
distribution
– Run model 10 times
– Assess predicted vs. 

observed infected area 
within 100 5k blocks

• Evaluate magnitude and 
direction of error and 
determine predictive 
accuracy

• Conduct sensitivity 
analysis of parameters



Additional research questionsAdditional research questions

• Test hypotheses about dispersal and 
infection processes
– Influence of weather events
– Simulate management scenarios



SignificanceSignificance
• Critical for predicting and 

slowing the spread of P. 
ramorum and other 
invasive species
– Incorporate spatial and 

temporal heterogeneity of 
environmental conditions 
into spread modeling

– Focus management efforts 
on high-risk landscapes 

– Test alternate 
management scenarios


