# 40. Sudden Oak Death

Gary Chastagner, Marianne Elliott, and Kathleen McKeever

# Hosts

The exotic, federally quarantined plant pathogen Phytophthora ramorum causes Sudden Oak Death (fig. 40.1) and ramorum shoot or leaf blight on more than 100 hosts from 36 different families. Hosts include a number of conifers, maples, tanoak, beech, and oak species (table 40.1). Although some hosts, such as oak and tanoak, develop stem cankers, most hosts only develop leaf spots and twig dieback when infected by P. ramorum, and are not usually killed by the pathogen. These diseases are commonly referred to as ramorum blight or dieback. In addition to hosts that have been naturally infected in the field, laboratory research indicates that a number of conifers, particularly many true firs and larch, may also be potential pathogen hosts.

## Distribution

Naturally infected hosts have been reported in forests and landscapes in California and southwestern Oregon coastal areas. Infected ornamental nursery stock, has been detected throughout the United States and British Columbia, Canada. Despite efforts to eradicate the pathogen from nurseries, the pathogen has spread to waterways and plants outside of infected nurseries at a limited number of sites. The distribution of this disease is expected to increase over time.

## Damage

Depending on the host species affected, *P. ramorum* may cause leaf spots, shoot blight, leaf and twig dieback, and outright tree mortality from stem cankers. Besides the direct damage this pathogen may cause, Federal and State regulatory actions associated with the detection of infected host



Figure 40.1—*Tanoaks killed by* Phytophthora ramorum *in a California forest.* Photo by Gary Chastagner, Washington State University.

|--|

| Name                  | Species                      | Symptom type                     |
|-----------------------|------------------------------|----------------------------------|
| Tanoak                | Notholithocarpus densiflorus | Stem and foliage                 |
| Coast live oak        | Quercus agrifolia            | Stem                             |
| California black oak  | Quercus kelloggii            | Stem                             |
| Shreve's oak          | Quercus parvula var. shrevei | Stem                             |
| Canyon live oak       | Quercus chrysolepis          | Stem                             |
| Douglas-fir           | Pseudotsuga menziesii        | Foliage, stem, and shoot dieback |
| Grand fir             | Abies grandis                | Foliage and shoot dieback        |
| White fir             | Abies concolor               | Foliage and shoot dieback        |
| California red fir    | Abies magnifica              | Foliage and shoot dieback        |
| Coast redwood         | Sequoia sempervirens         | Foliage                          |
| European yew          | Taxus baccata                | Foliage                          |
| Pacific yew           | Taxus brevifolia             | Stem, foliage, and shoot dieback |
| California nutmeg     | Torreya californica          | Foliage and shoot dieback        |
| Japanese larch        | Larix kaempferi              | Stem, foliage, and shoot dieback |
| Western hemlock       | Tsuga heterophylla           | Stem, foliage, and shoot dieback |
| California bay laurel | Umbellularia californica     | Foliage                          |
| Pacific madrone       | Arbutus menziesii            | Foliage                          |
| Horse chestnut        | Aesculus hippocastanum       | Stem                             |
| Oregon ash            | Fraxinus latifolia           | Foliage                          |
| Bigleaf maple         | Acer macrophyllum            | Foliage                          |

material have the potential for significant economic losses to individual nurseries and the forest nursery industry.

# Diagnosis

Symptoms caused by P. ramorum on conifer hosts look much like injury from a late frost or Botrytis tip blight. Initial infections occur on new growth in spring, and during bud break and shoot elongation periods. After the initial infection, the pathogen causes the emerging shoot to wilt (fig. 40.2). The pathogen may continue to spread down the shoots, resulting in dieback. Dieback extent varies by host, when the infection occurs, and environmental conditions. When shoots are infected just after bud break, the pathogen commonly grows down the shoot into the previous year's growth. Often the needles on the previous year's growth are shed as the pathogen grows down the shoot, resulting in dead twigs with tufts of dead

terminal needles (fig. 40.3). If infection occurs later during shoot elongation, the pathogen may only cause a dieback of the newly developing shoot. Repeated infection may kill seedlings and saplings or greatly alter young tree growth and form. On conifer nursery stock, where shoot elongation often occurs throughout the growing season, it is likely that *P. ramorum* infections are not limited to the spring. Symptoms on hosts other than conifers can vary greatly, from leaf spots to mature tree death.

*Phytophthora* species produce no easily recognizable fruiting bodies or spores on infected tissue, and diagnosis can be confirmed only through isolating the organism into pure culture. Because *P. ramorum* causes symptoms similar to those caused by other plant pathogens and abiotic conditions, samples must be sent to a lab for diagnosis. Selective media are often used in attempts to isolate the pathogen from



**Figure 40.2**—*Tip dieback of Douglas-fir caused by* Phytophthora ramorum *in a California Christmas tree plantation.* Photo by Gary Chastagner, Washington State University.



Figure 40.3—Tip dieback of grand fir caused by Phytophthora ramorum in a California Christmas tree plantation. Photo was taken in May shortly after infection following spring rainstorms. Photo by Gary Chastagner, Washington State University.

infected tissues. *P. ramorum* produces copious amounts of chlamydospores in culture (fig. 40.4). *Phytophthora* species identification is usually left to specialists. Polymerase chain reaction (PCR) molecular tests are often used to confirm *P. ramorum* presence in samples.

## **Biology**

During wet periods, P. ramorum produces copious amounts of sporangia and zoospores from spots on infected leaves of epidemiologically important (sporeproducing) hosts such as California bay laurel (fig. 40.5). The spores are then carried by wind-driven rain to the foliage and bark of other susceptible hosts. Research on Christmas tree varieties in California shows that fairly high inoculum (spores) levels are necessary for Douglas-fir infection, and that little infection risk exists for trees located 5 to 8 m (16 to 26 ft) away from infected, epidemiologically important hosts. Recent observation and research in the United Kingdom indicates that infected Japanese larch support high foliar sporulation levels, unlike Douglas-fir and grand fir, which are most likely epidemiologically unimportant because inoculum is not produced on infected tissues. In addition to its natural dispersal, P. ramorum can also be spread via contaminated irrigation water and the movement of contaminated soil and infected plants.

This pathogen grows between 2 and 28 °C (35 and 82 °F), with optimum growth at 20 °C (68 °F). Hyphae can survive short time periods at temperatures as low as -5 °C (23 °F) and as high as 30 °C (86 °F). Chlamydospores embedded in host tissue can survive temperature extremes from -10 to 35 °C (14 to 95 °F) for up to 1 week.

#### **Conifer and Hardwood Diseases**



Figure 40.4—*Chlamydospores and hyphae of* Phytophthora ramorum *as seen in culture.* Photo by Marianne Elliott, Washington State University.

In water, zoospore release from sporangia is stimulated by exposure to low temperatures around 4 °C (39 °F), and direct sporangia germination occurs at higher temperatures.

# Control

#### Prevention

Although the risk of P. ramorum developing on conifer nursery stock is unclear, excluding the pathogen from the nursery is the single most effective way to reduce risks. Do not transplant seedlings from infested nurseries into disease-free ones. In infested areas, a seedling in close proximity to a spore-producing host has an increased P. ramorum infection risk. In these areas, nursery perimeters should be inspected for the presence of inoculumproducing hosts that could potentially serve as an inoculum source. Inform crews about P. ramorum implications on nursery stock and sanitation practices that reduce pathogen transfer when working



**Figure 40.5**—*Tips of California bay laurel leaves infected with* Phytophthora ramorum. *This host is responsible for much of the disease spread in California forests.* Photo by Kathy Riley, Washington State University.

in infested areas. Avoid equipment and crew movement between infested and noninfested areas. Scrape, brush, and hose off accumulated soil and mud from clothing, gloves, boots, and shoes and sanitize these items with a disinfectant.

### Cultural

Remove potential landscape hosts that are located within 10 m (33 ft) of the nursery site. Don't irrigate crops with water from streams or ponds potentially contaminated with the pathogen unless the water has been treated. Several methods for treating *Phytophthora*-infested water can be employed, which include adding chemicals such as chlorine to the water and filtrating the water.

#### **Chemical**

Several fungicides are registered for *P. ramorum* control in nurseries. Soil fumigation is an effective treatment for soil infested with chlamydospores.

## **Selected References**

California Oak Mortality Task Force. http:// www.suddenoakdeath.org (accessed October 2010).

Goheen, E.M.; Hansen, E.; Kanaskie, A.; Osterbauer, N.; Parke, J.; Pscheidt, J.; Chastagner, G.A. 2006. Sudden Oak Death and *Phytophthora ramorum*: a guide for forest managers, Christmas tree growers, and forest-tree nursery operators in Oregon and Washington. Oregon State University Extension Service Pamphlet, EM 8877. 16 p.

Ufer, T.; Posner, M.; Wessels, H.P.; Wagner, S.; Kaminski, K.; Brand, T.; Werres, S. 2008. Four years of experience with filtration systems in commercial nurseries for eliminating *Phytophthora* species from recirculation water. In: Frankel, S.J.; Kliejunas, J.T.; Palmieri, K.M., tech. coords. Proceedings of the Sudden Oak Death Third Science Symposium. PSW-GTR-214. Albany, CA: USDA Forest Service, Pacific Southwest Research Station. 491 p.

USDA Animal & Plant Health Inspection Service (APHIS). http://www.aphis.used.gov/ ppq/ispm/sod.

Washington State University. http://www. puyallup.wsu.edu/ppo/gallery/conifers/ album/index.html (accessed October 2010).

Werres, S.; Marwitz, R.; Man In't Veld, W.A.; De Cock, A.W.A.M.; Bonants, P.J.M.; DeWeerdt, M.; Themann, K.; Ilieva, E.; Baayen, R.P. 2001. *Phytophthora ramorum* sp. nov., a new pathogen on *Rhododendron* and *Viburnum*. Mycological Research. 105(10): 1155–1165.

Yakabe, L.E.; MacDonald, J.D. 2010. Soil treatments for the potential elimination of *Phytophthora ramorum* in ornamental nursery beds. Plant Disease. 94: 320–324.