Scientific Reference List for Phytophthora ramorum
Last updated 04 August, 2020


Bilodeau, G.J.; Martin, F.N.; Coffey, M.D.; and Blomquist, C.L. 2014. Development of a Multiplex Assay for Genus- and Species-Specific Detection of Phytophthora Based on Differences in Mitochondrial Gene Order. Phytopathology. 104(7): 733-748.


chain reaction, using Taqman(R), SybrGreen, and molecular beacons. Canadian Journal of Plant Pathology 25(4).


Brasier, C.M. 2000. Summary pest risk analysis. [Phytophthora associated with sudden oak death], 10 pp


Chastagner, G. and M. Elliott. The risk of asymptomatic Phytophthora ramorum infection on fungicide treated rhododendrons.


Conrad, A.O.; McPherson, B.A.; Wood, D.L.; Madden, L.V.; and Bonello, P. 2017. Constitutive Phenolic Biomarkers Identify Naïve Quercus agrifolia Resistant to Phytophthora
ramorum, the Causal Agent of Sudden Oak Death. Tree Physiology. 


Davison, E.M. and F.C.S. Tay. 2005. How many soil samples are needed to show that Phytophthora is absent from sites in the south-west of Western Australia? Australasian Plant Pathology 34:293-297.


DEFRA’s Central Science Laboratory (CSL) has issued their “Investigation of Alternative Eradication Control Methods (Heat Treatment) for P. ramorum and P. kernoviae on/in Plants.” (Feb 2008)


DEFRA. 2005b. Plants reported as hosts of P. ramorum. (Last consulted 10 January, 2005)

DEFRA. 2006. Plants reported as natural hosts of Phytophthora ramorum. (Last consulted 29 April, 2006)

DEFRA. 2004a. Phytophthora ramorum - a threat to our trees, woodlands and heathlands.


Microsatellite Loci for the NA2 Lineage of Phytophthora ramorum from Whole Genome Sequence Data. Plant Disease. 101(5): 666-673.


Ivors, K., M. Garbelotto, I. D.E. Vries, C. Ruyter-Spira, B. TE. Heckkert, N. Rosenzweig, and P. Bonants. 2006. Microsatellite markers identify three lineages of Phytophthora ramorum in


Linderman, R.G. January–March 2008. Eradication of Phytophthora ramorum and Other Pathogens from Potting Medium or Soil by Treatment with Aerated Steam or Fumigation with Metam Sodium. HortTechnology 18(1), Pages 106-110.


Mavrodieva, V.A.; Dennis, G.; and Shiel, P.J. 2017 USDA APHIS NPPLAP Proficiency Testing and Planned Methods Deviation as a Part of the Methods’ Validation Process for a Network of Laboratories. 27-S.


McDonald, P.M.; Zhang, J.; Senock, R.S.; and Wright, J.W. 2013. Morphology, Physiology, Genetics, Enigmas, and Status of an Extremely Rare Tree: Mutant Tanoak. Madroño (In press).

McDonald, V. and N. Grunwald. 2007. Evaluation of infection potential and sporulation of the three clonal lineages of Phytophthora ramorum on two Rhododendron cultivars. Phytopathology 97:S73.


Pokharel, R.R. 2017. Incidence of *Phytophthora* in Maryland Nurseries. 451-P.


Preuett, J.A.; Collins, D.J.; Luster, D.G.; and Widmer, T.L. 2013. Screening Selected Gulf Coast Forest Species for Susceptibility to *Phytophthora ramorum*. Online. Plant Health Progress. DOI: 10.1094/PHP-2013-0730-01-RS.


Shishkoff, N. 2013. The Concentration of Sporangia or Zoospores of *Phytophthora ramorum* Required for Infection of Host Roots. Phytopathology 103(Suppl. 2):S2.132.


Tjosvold, S., G. Chastagner, and M. Elliott. Effect of fungicides and biocontrol agents on inoculum production and persistence of Phytophthora ramorum on nursery hosts.


Widmer, T. and N. Shishkoff. Use of Trichoderma spp. to remediate Phytophthora ramorum-infested soil.


Willoughby, I.H.; Seier, M.K.; Stokes, V.J.; Thomas, S.E.; and Varia, S. 2015. Synthetic Herbicides Were More Effective than a Bioherbicide Based on Chondrostereum purpureum in Reducing Resprouting of Rhododendron ponticum, a Host of Phytophthora ramorum in the UK. Forestry. DOI: 10.1093/forestry/cpv004.


