Scientific Reference List for Phytophthora ramorum
Last updated 06 November, 2013


Bostock, R.M. and T. Roubtsova. Episodic abiotic stress and ramorum blight in nursery ornamentals: impacts on symptom expression and chemical management of Phytophthora ramorum in Rhododendron


Brasier, C.M. 2000. Summary pest risk analysis. [*Phytophthora* associated with sudden oak death], 10 pp


Chastagner, G. and M. Elliott. *The risk of asymptomatic Phytophthora ramorum infection on fungicide treated rhododendrons*.


editors. Proceedings, 2nd international IUFRO conference on Phytophthora in forest ecosystems; working party 7.02.09 meeting; 2001 Sept. 30 – Oct. 5; Albany, Western Australia, Perth: Murdoch University Print; 1088-144.


Davison, E.M. and F.C.S. Tay. 2005. How many soil samples are needed to show that Phytophthora is absent from sites in the south-west of Western Australia? Australasian Plant Pathology 34:293-297.


DEFRA’s Central Science Laboratory (CSL) has issued their “Investigation of Alternative Eradication Control Methods (Heat Treatment) for *P. ramorum* and *P. kernoviae* on/in Plants.” (Feb 2008)


DEFRA. 2005b. Plants reported as hosts of *P. ramorum*. (Last consulted 10 January, 2005)

DEFRA. 2006. Plants reported as natural hosts of *Phytophthora ramorum*. (Last consulted 29 April, 2006)

DEFRA. 2004a. *Phytophthora ramorum* - a threat to our trees, woodlands and heathlands.


Florance, E.R. 2002. Plant structures through which Phytophthora ramorum establishes


Funahashi, F. and Parke, J.L. 2013. Effects of Solarization and Biocontrol on Soilborne Phytophthora spp. in Container Nurseries. Phytopathology 103(Suppl. 2):S2.46.


Hüberli, D., B. Lutzy, B. Voss, M. Calver, M. Ormsby, and M. Garbelotto. 2008. Susceptibility of New Zealand flora to Phytophthora ramorum and pathogen sporulation potential: an


Ireland, K.B.; Hüberli, D.; Dell, B.; Smith, I.W.; Rizzo, D.M.; and Hardy, G.E. St J. (Online; 2012a). "Potential susceptibility of Australian native flora to NA2 isolate of Phytophthora


Jeffers, S., I. Meadows, and J.-S. Hwang. Studies on Soil Mitigation of *Phytophthora* ramorum.


Kox, L.F.F., I.R. van Brouwershaven, B.T.L.H. van de Vossenberg, H.E. van den Beld, P.J.M. Bonants, and J. de Gruyter. 2007. Diagnostic values and utility of immunological,


McDonald, P.M.; Zhang, J.; Senock, R.S.; and Wright, J.W. 2013. Morphology, Physiology, Genetics, Enigmas, and Status of an Extremely Rare Tree: Mutant Tanoak. Madroño (In press).

McDonald, V. and N. Grunwald. 2007. Evaluation of infection potential and sporulation of the three clonal lineages of *Phytophthora ramorum* on two *Rhododendron* cultivars. Phytopathology 97:S73.


http://danr.ucop.edu/ihrmp/sodsymp/paper/paper23.html


Preuett, J.A.; Collins, D.J.; Luster, D.G.; and Widmer, T.L. 2013. Screening Selected Gulf Coast Forest Species for Susceptibility to Phytophthora ramorum. Online. Plant Health Progress. DOI: 10.1094/PHP-2013-0730-01-RS.


Shishkoff, N. 2013. The Concentration of Sporangia or Zoospores of *Phytophthora ramorum* Required for Infection of Host Roots. Phytopathology 103(Suppl. 2):S2.132.


Tjosvold, S., G. Chastagner, and M. Elliott. Effect of fungicides and biocontrol agents on inoculum production and persistence of Phytophthora ramorum on nursery hosts.


http://dx.doi.org/10.1007/s10658-010-9727-5.


Widmer, T. and N. Shishkoff. Use of Trichoderma spp. to remediate Phytophthora ramorum-infested soil.


