Spatial Modeling of *P. ramorum* in California:

Strengths and weaknesses of rule-based, statistical, and cellular automata methods

Ross K. Meentemeyer University of North Carolina at Charlotte Department of Geography & Earth Sciences

I. Rule-Based Modeling

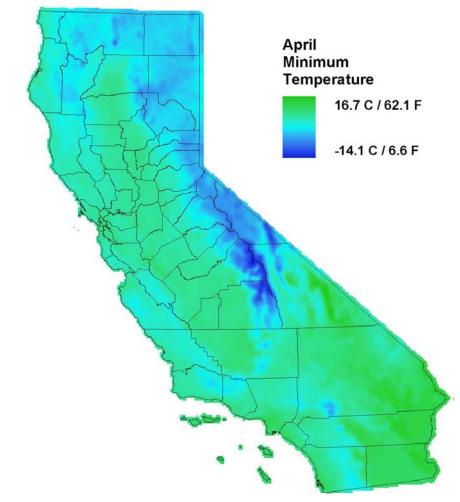
- incorporates epidemiological and biological factors driving establishment and spread in California plant communities
 - Host susceptibility
 - Host epidemiology
 - Moisture
 - Temperature

Parameterizing the Model

 Scored 5 variables to encode magnitude & direction of their effect on disease spread

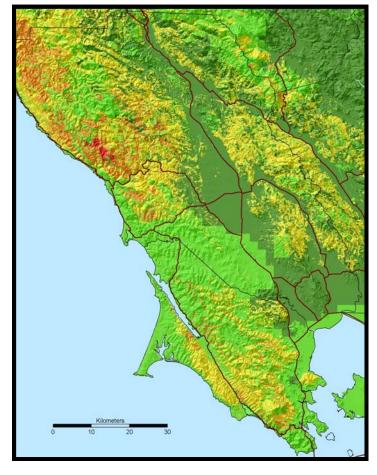
Variables

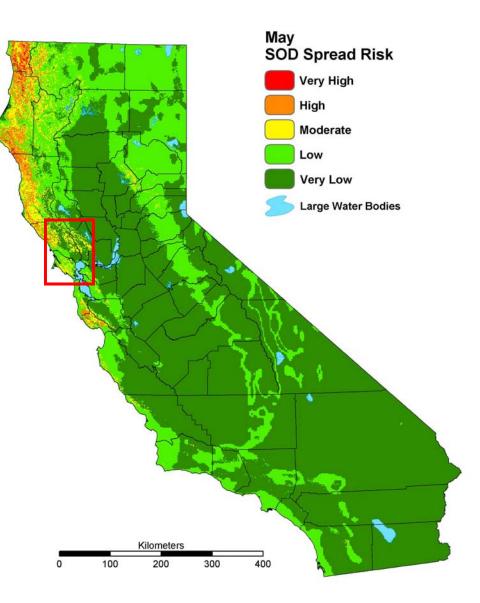
- Host species abundance
- Precipitation
- Relative Humidity
- Maximum Temperature
- Minimum Temperature



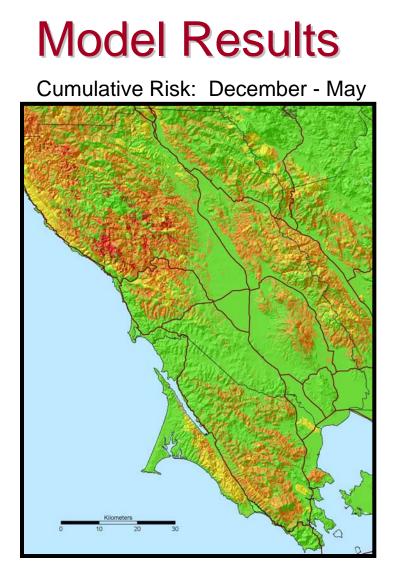
Model Results

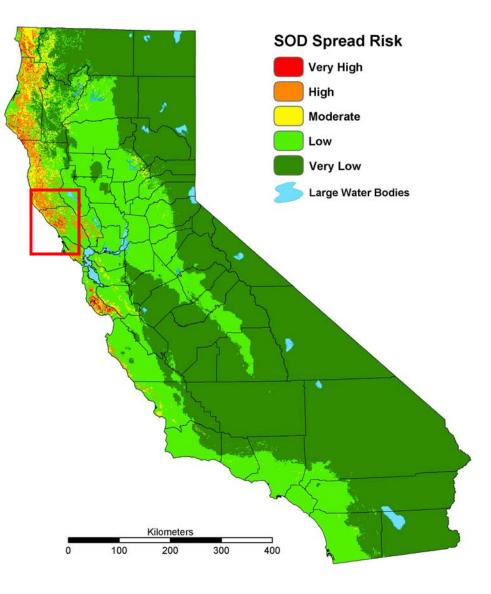
Seasonal Changes: December - May





Meentemeyer et al. 2004 (Forest Ecology & Management)





Meentemeyer et al. 2004 (Forest Ecology & Management)

Rule-Based Modeling

Strengths

- simple methods
- works well with limited data on pathogen survival and transmission

Limitations

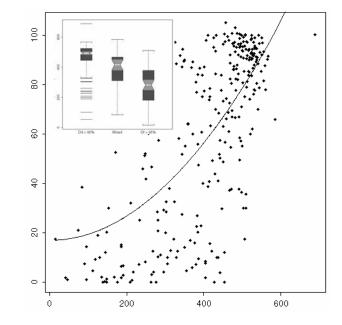
- too simple
- may not reflect real field conditions
- risk-based (not probabilistic) and static

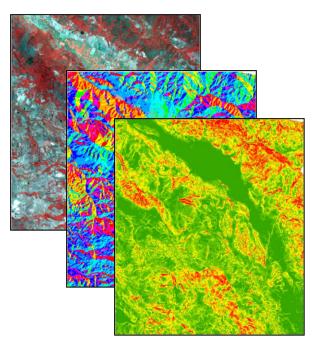
II. Statistical Modeling

 based on observed relationships between pathogen occurrence, host composition, and environmental conditions

Example Methods

- Regression _____ require presence & absence data
- Neural Networks
- once a model is developed, can apply its equation across mapped variables in a GIS



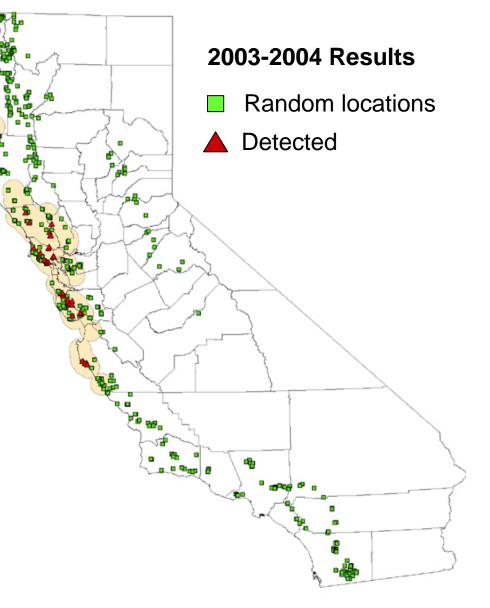


Response Variable

- extensive dataset on distribution *P. ramorum*
- within high-risk forests, we have surveyed 495 random locations (2003-2004)
- *P. ramorum* detected at 33 of the 495 sites.

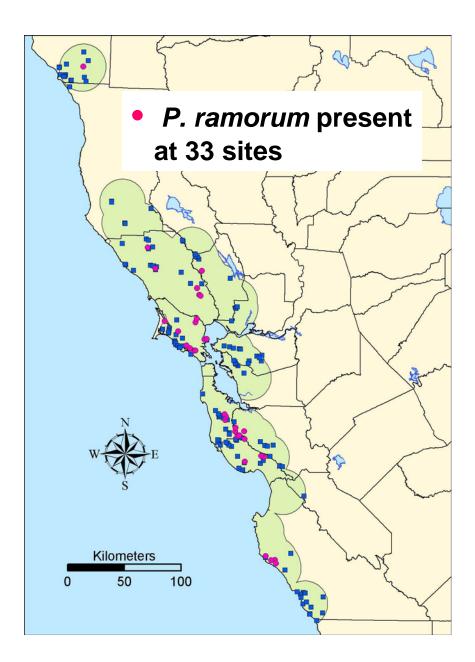
n = 9 of 139 in 2003 n = 24 of 347 in 2004

• 20 km was farthest detection



Defining the Analysis Region

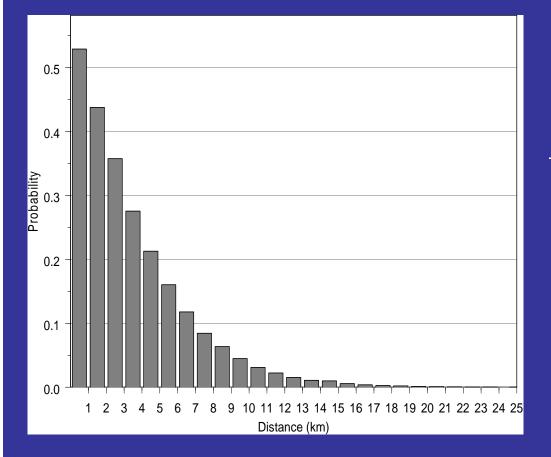
- mapped COMTF sites
- limited to areas < 20 km of confirmed infection sites
- yielded **166** random sites from survey



Predictor Variables

- Population pressure
- Climate conditions
- Fire history
- Presence of bay laurel
 & tanoak
- Distance to known infection

Statistically-Based Model



Logistic Regression (r² =0.51)

 Distance (-)
 p=0.0000

 Pop. pressure (+)
 p=0.0001

 Bay laurel (+)
 p=0.0002

 Precipitation (+)
 p=0.0001

 Pop. pressure x Precip.
 p=0.0001

Eliminated Variables

Min. & Max. Temperature Relative Humidity Fire History Tanoak presence

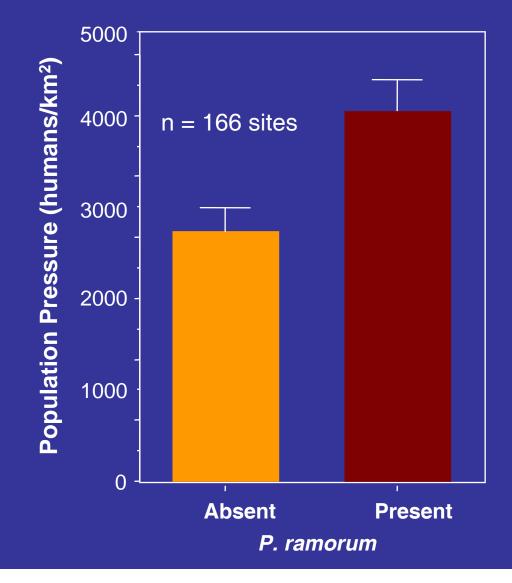
Logistic Regression (r² =0.51)

Distance (-)	p=0.0000
Pop. pressure (+)	p=0.0001
Bay laurel (+)	p=0.0002
Precipitation (+)	p=0.0001
Pop. pressure <i>x</i> Precip.	p=0.0001

Eliminated Variables

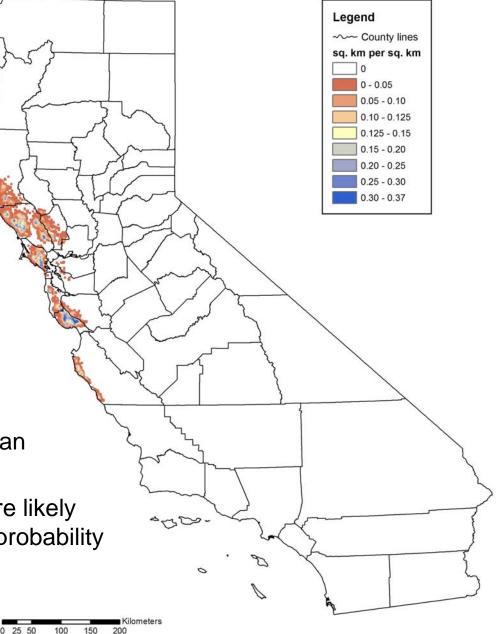
Min. & Max. Temperature Relative Humidity Fire History Tanoak presence

Statistically-Based Model



Application and Simulation in GIS

- Mapped all variables at 50 x 50 m
- logistic regression was applied to each variable to produce a map of occurrence probability (0-1)
- used Monte Carlo simulation to predict distribution across unsampled regions
- a random number (0-1) generated for each cell and compared to logistic probability
- cell infected if random number lower than probability of infection
- higher the predicted probability the more likely the random number will fall below that probability



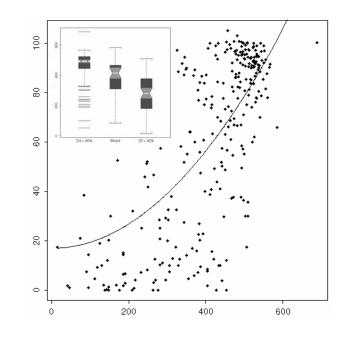
Statistical Modeling

Strengths

- established methods like regression
- empirical relationships across study system facilitate ecological and epidemiological understanding

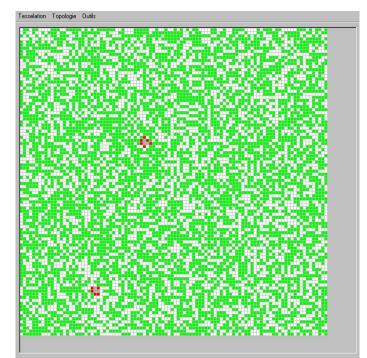
Limitations

- susceptible sites have not yet been exposed (distance variables partially offset this)
- probabilistic, but still static (not dynamic)
- need dynamic models of establishment and spread driven by weather events and dispersal vectors



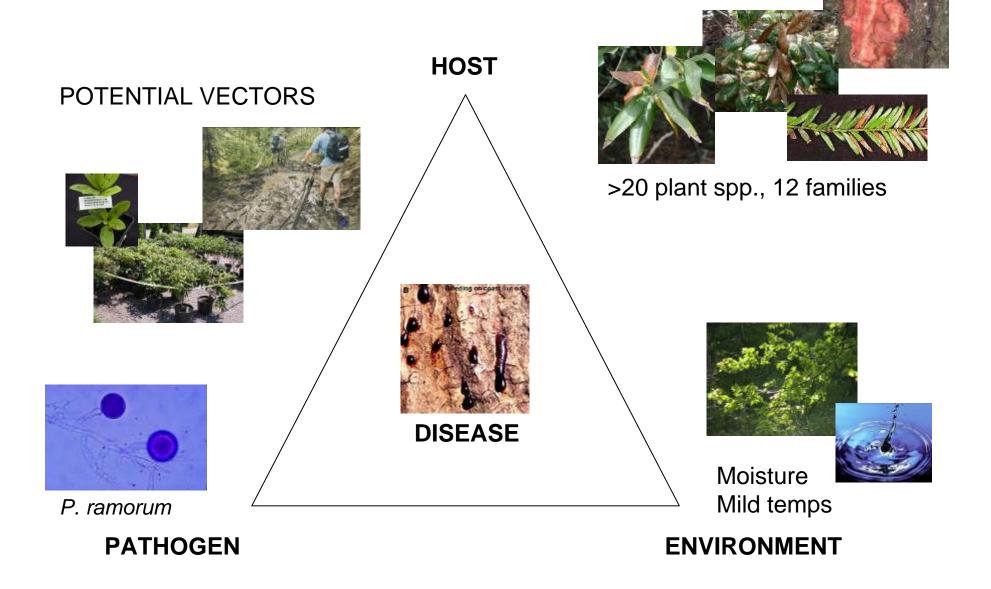
III. Cellular Automata Modeling

- powerful approach for modeling processes driving establishment & spread
- may conduct repeatable nondestructive experiments at large scales
 - effect of extreme weather
 - efficacy of management practices
- requires parameterization of system components across a grid and specified time steps (e.g. 1hr, 1day)



Spread of a Wildfire

System Components of P. ramorum



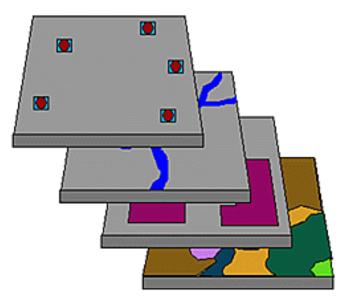
System Components

In the model

$$P_{t+1} \approx \frac{S * P * T * I * H}{D}$$

P = Probability of infection

- S = Host susceptibility
- T = Temperature
- P = Precipitation
- I = Surrounding disease levels
- D = Distance
- H = Human vectors



- Probability of infection modeled for each cell based on system components
 - Number between zero and one

Model landscape Time step 1

 0.08	0.21	0.11	0	0	
0	0.15	0.50	0.01	0	
0.04	0.02	0.13	0.18	0	
0.42	0	0.26	0.06	0.22	
0	0.26	0	0.04	0	

- Probability of infection modeled for each cell based on system components
 - Number between zero and one
- Weighted random process
 - Generate random numbers between zero and one

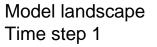
Model landscape Time step 1

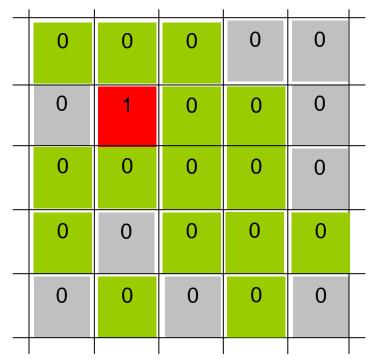
 	ļ	ļ	ļ		
0.08 0.15	0.21 0.23	0.11 0.79	0	0	
 0	0.15 0.10	0.50 0.52	0.01 0.34	0	
0.04 0.07	0.02 0.86	0.13 0.25	0.18 0.97	0	
0.42 0.64	0	0.26 0.29	0.06 0.11	0.22 0.73	
 0	0.26 0.84	0	0.04 0.12	0	

- Probability of infection modeled for each cell based on system components
 - Number between zero and one
- Weighted random process
 - Generate random numbers between zero and one
- Compare probability to random numbers
 - Infected Probability > Random
 - Uninfected Probability < Random
 - No host vegetation (0)

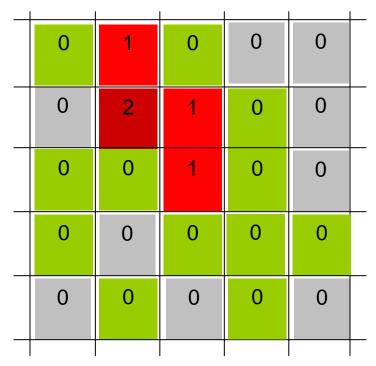
 0.08 0.15	0.21 0.23	0.11 0.79	0	0	
0	0.15 0.10	0.50 0.52	0.01 0.34	0	
0.04 0.07	0.02 0.86	0.13 0.25	0.18 0.97	0	
0.42 0.64	0	0.26 0.29	0.06 0.11	0.22 0.73	
0	0.26 0.84	0	0.04 0.12	0	

- Probability of infection modeled for each cell based on system components
 - Number between zero and one
- Weighted random process
 - Generate random numbers between zero and one
- Compare probability to random numbers
 - Infected Probability > Random
 - Uninfected Probability < Random</p>
 - No host vegetation (0)
- Outputs disease intensity as count of times cell is infected

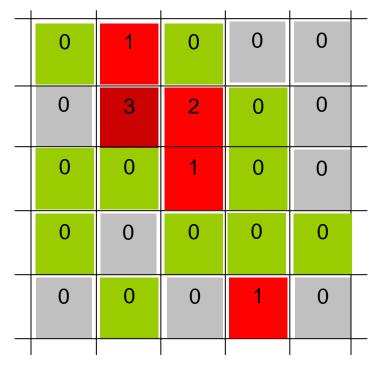


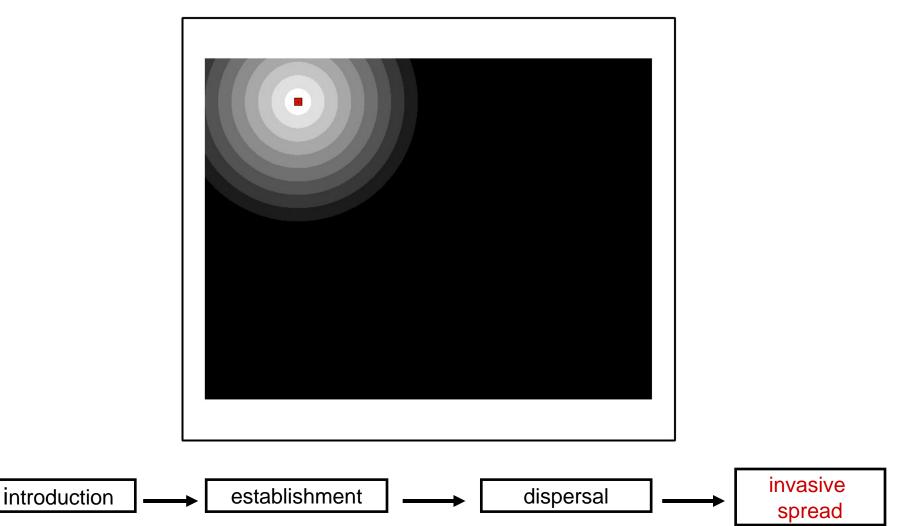


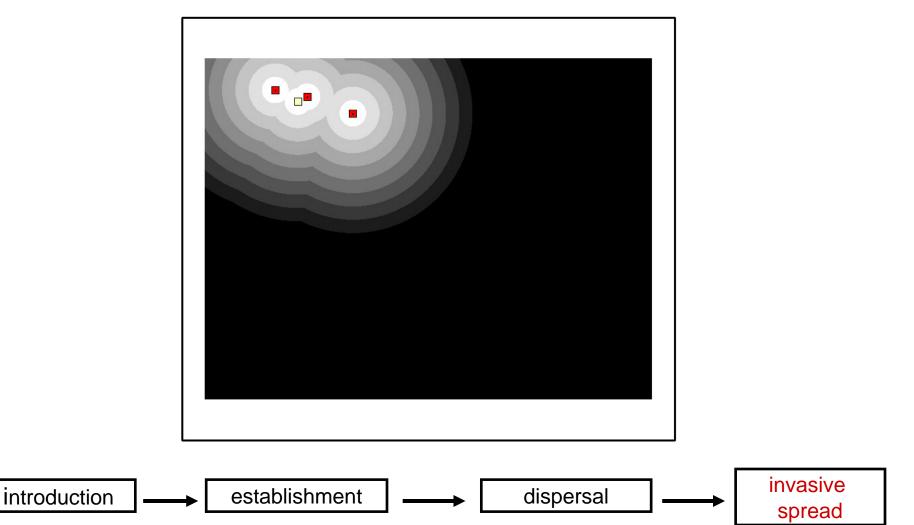
- Probability of infection modeled for each cell based on system components
 - Number between zero and one
- Weighted random process
 - Generate random numbers between zero and one
- Compare probability to random numbers
 - Infected Probability > Random
 - Uninfected Probability < Random</p>
 - No host vegetation (0)
- Outputs disease intensity as count of times cell is infected
- Iterates on a weekly time step

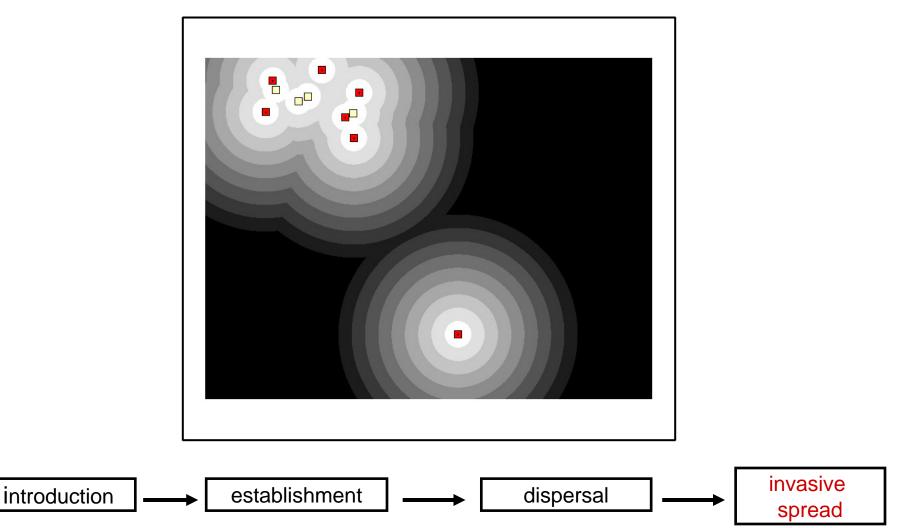


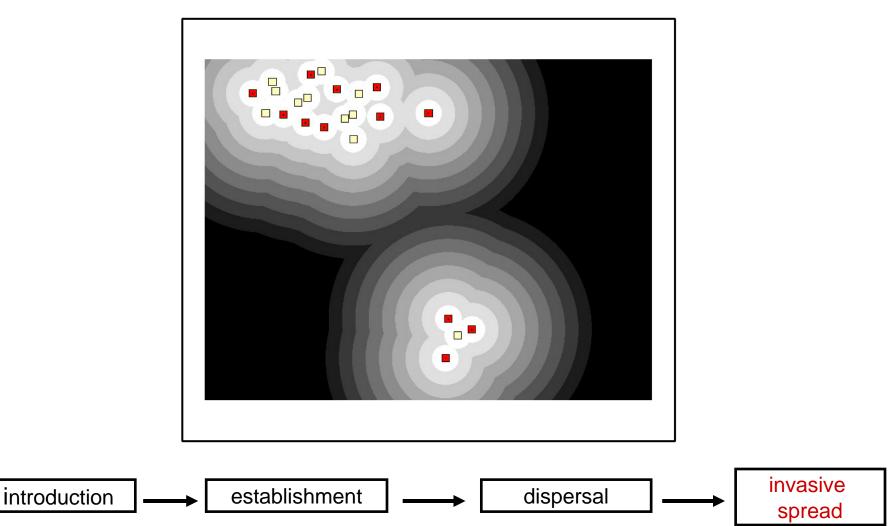
- Probability of infection modeled for each cell based on system components
 - Number between zero and one
- Weighted random process
 - Generate random numbers between zero and one
- Compare probability to random numbers
 - Infected Probability > Random
 - Uninfected Probability < Random</p>
 - No host vegetation (0)
- Outputs disease intensity as count of times cell is infected
- Iterates on a weekly time step











Mapping and Parameterizing System Components

Spatial Grain = 250 m cells Time Step = 1 week

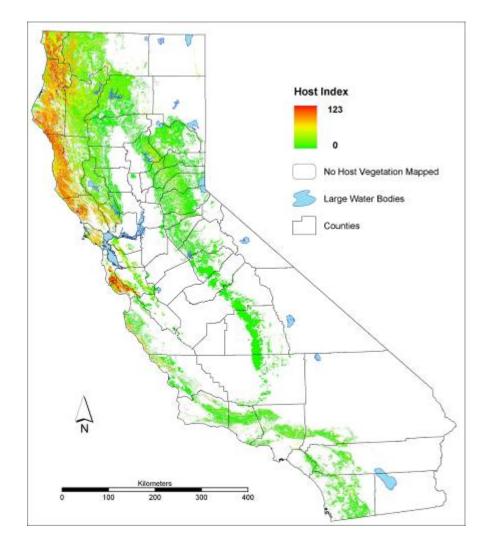
Host Susceptibility

Parameterization

Host Index (S)

- Meentemeyer *et al.* 2004
- Ranked susceptibility of each species
- Using CALVEG data, each cell received a composite score based on susceptibility rank and abundance of all species present
- Output scaled to 100 points

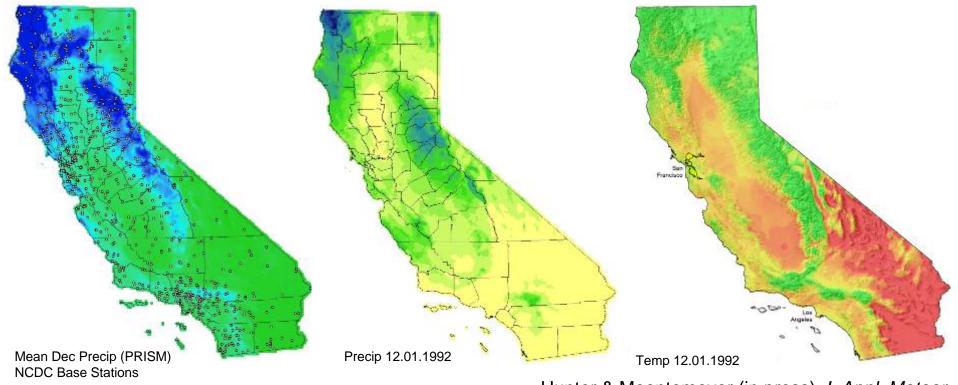
$$\mathbf{P}_{t+1} \approx \frac{S*P*T*I*H}{D}$$

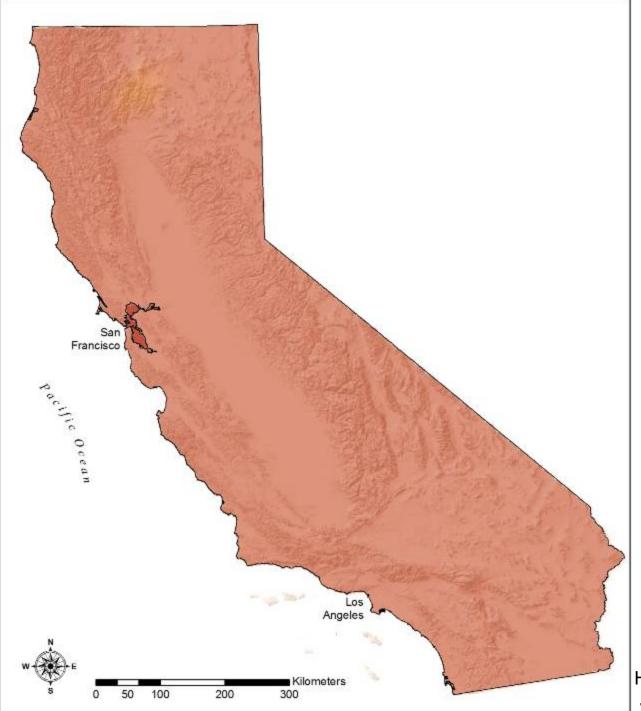


Weather Events

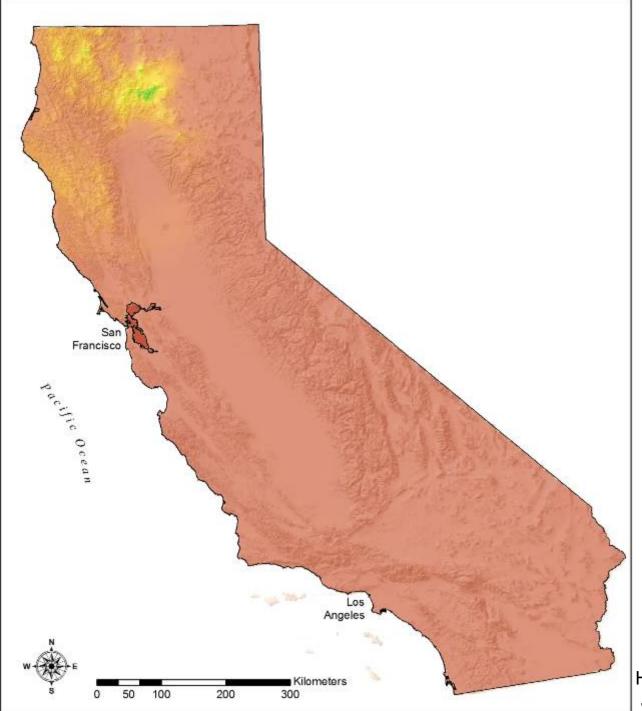
Mapping Methods

- Daily precip & temp at NCDC-NOAA point locations
- Integrate point data with long-term average grids (PRISM)

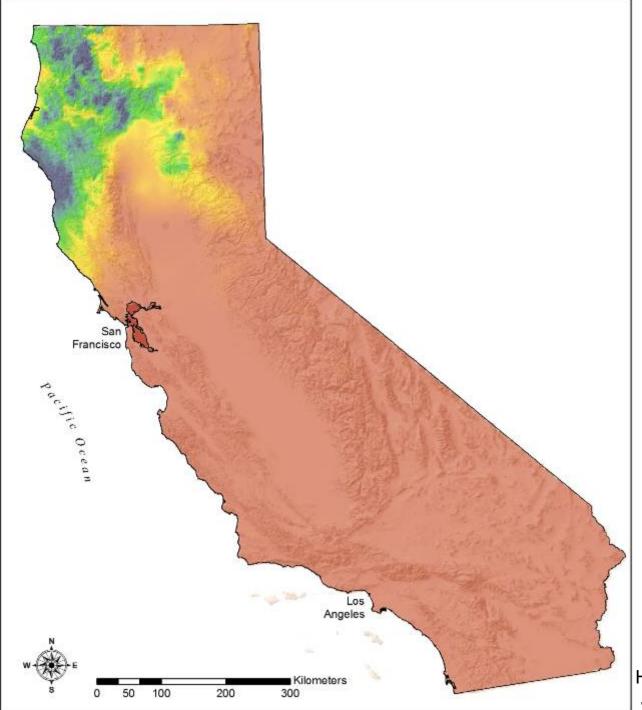




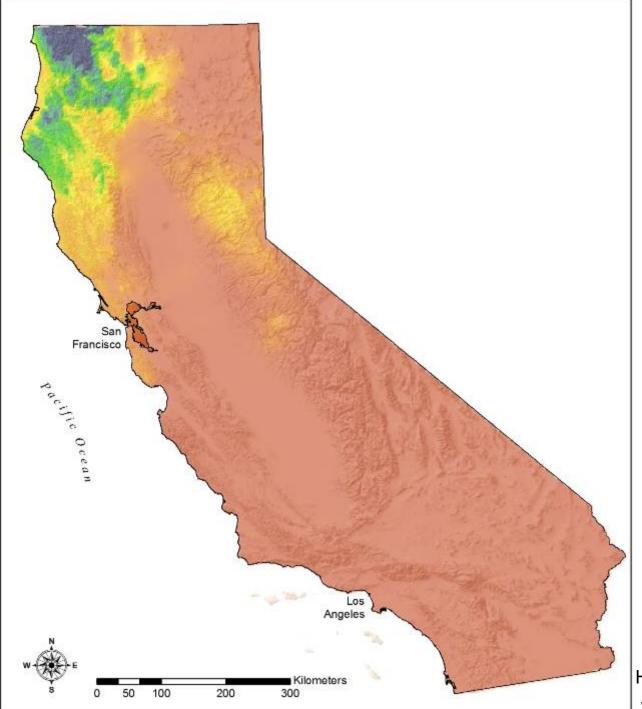
March 20, 1998



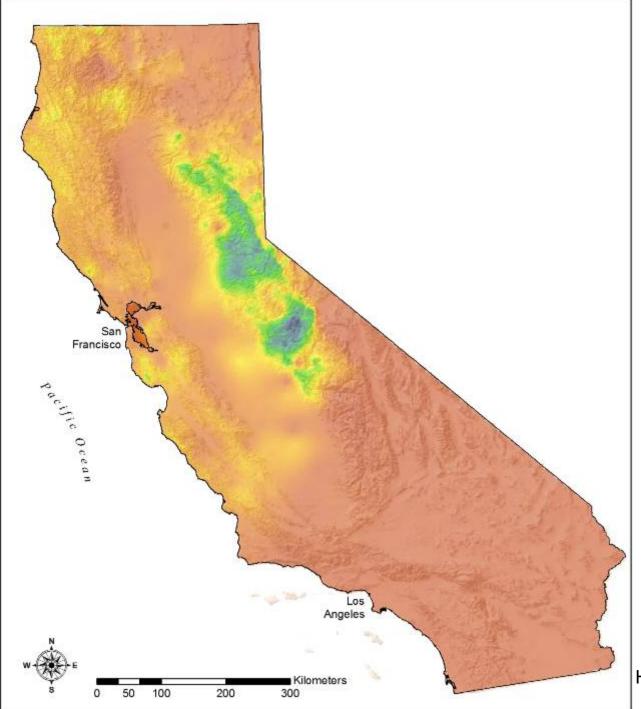
March 21, 1998



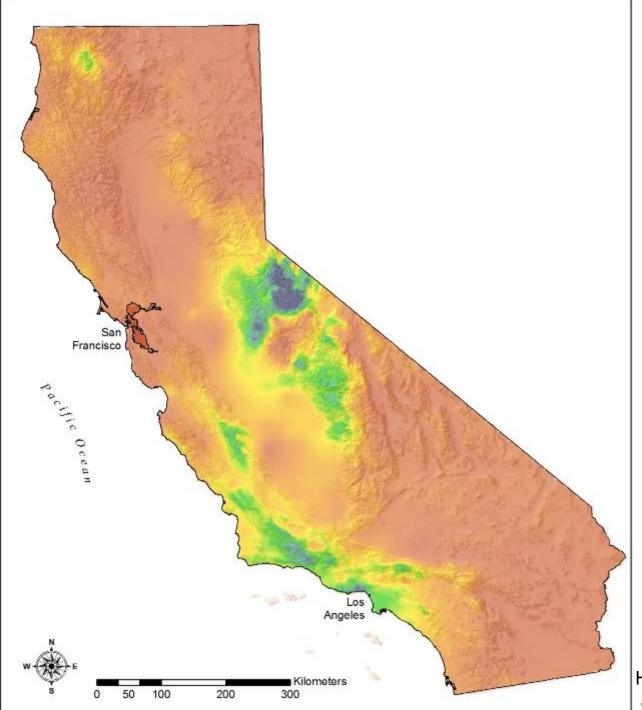
March 22, 1998



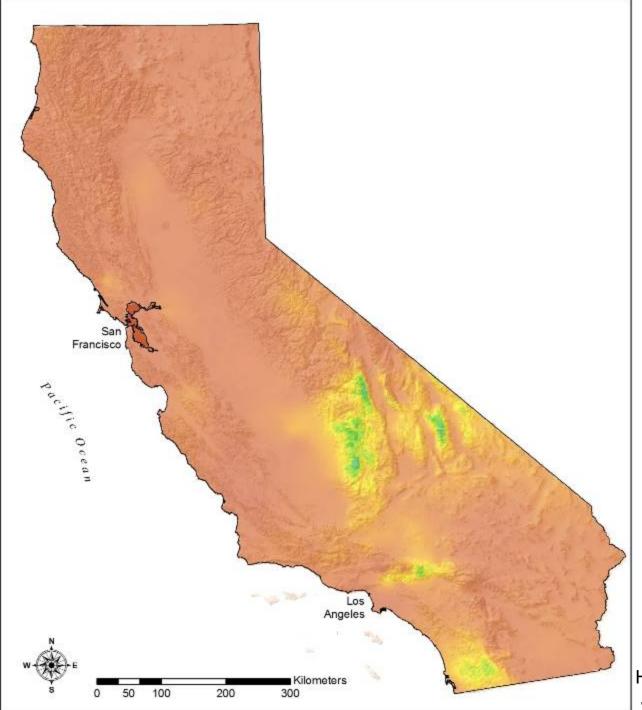
March 23, 1998



March 24, 1998



March 25, 1998



PRECIPITATION

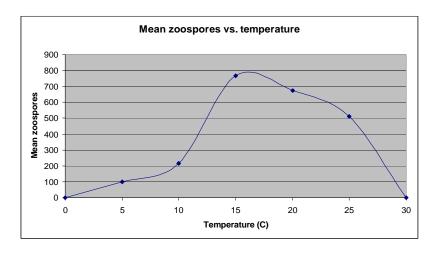
March 26, 1998

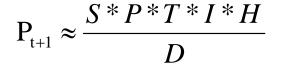
Hunter & Meentemeyer (in press) *J. Appl. Meteor.*

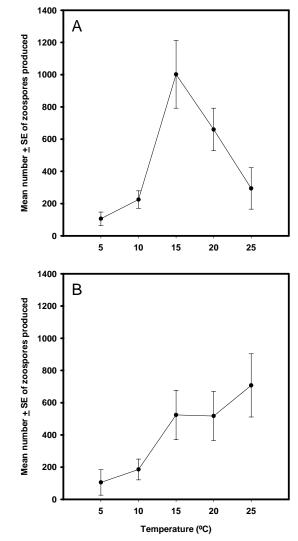
Weather Events

Parameterizing Temperature

- Davidson et al. (2005) lab studies
 - Measured zoospore production on bay
 - 7 set temps, 2 trials, 2 sets of 10 leaves each trial
- In the model
 - Average 2 trials
 - Fit curvilinear equation, scaled to 10 point scale
- Coded into model using weekly mean, max daily





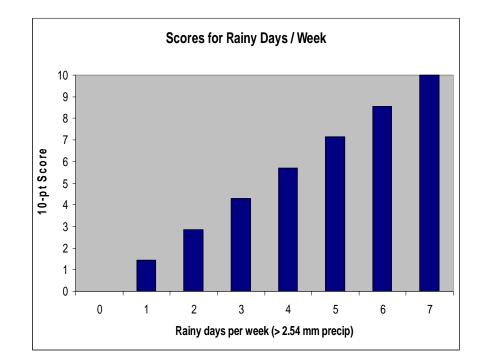


Davidson et al. 2005 Phytopathology

Weather Events

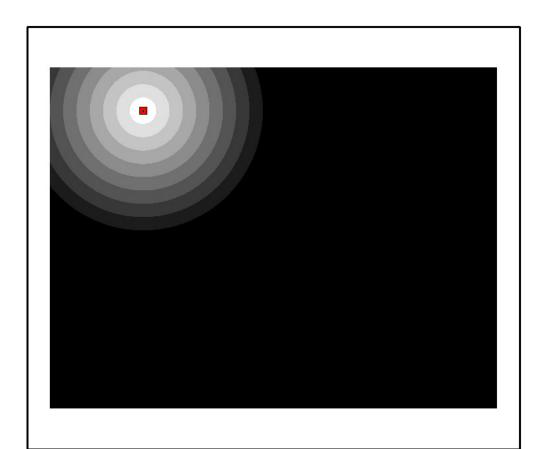
Parameterizing Precipitation

- Garbelotto / Davidson studies
 - 9-12 hrs of leaf moisture required for significant infection
- In the model
 - Rainy days are >2.5 mm precip
 - Assume linear relationship between potential sporulation and # of wet days per week
 - Scale # of wet days per week to 10 point scale

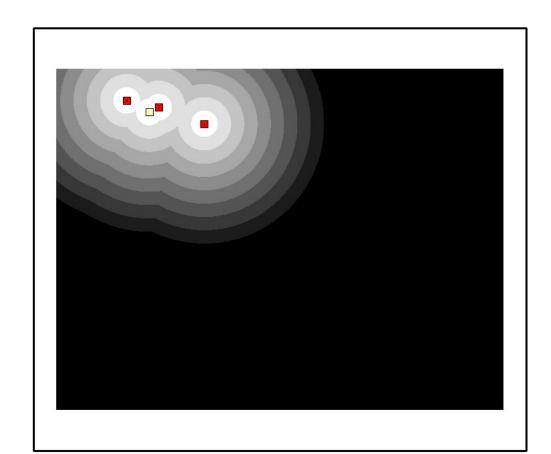


$$\mathsf{P}_{\mathsf{t}+1} \approx \frac{S * P * T * I * H}{D}$$

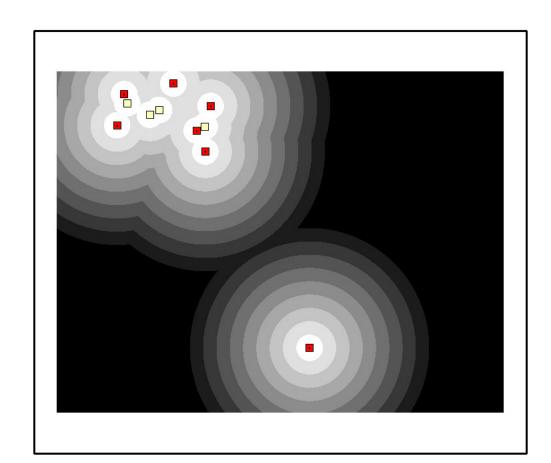
- Straight-line distance to nearest infected site
- Recalculated for each time step



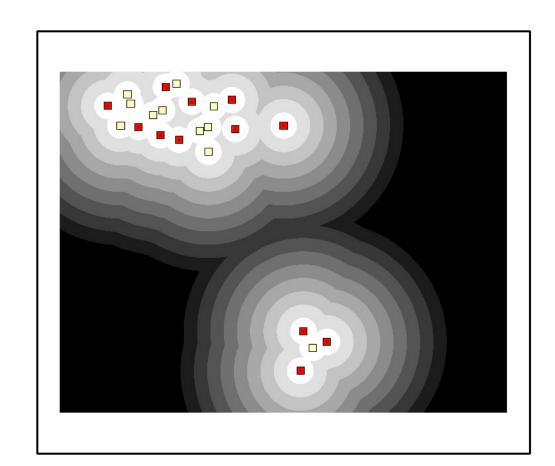
- Straight-line distance to nearest infected site
- Recalculated for each time step



- Straight-line distance to nearest infected site
- Recalculated for each time step



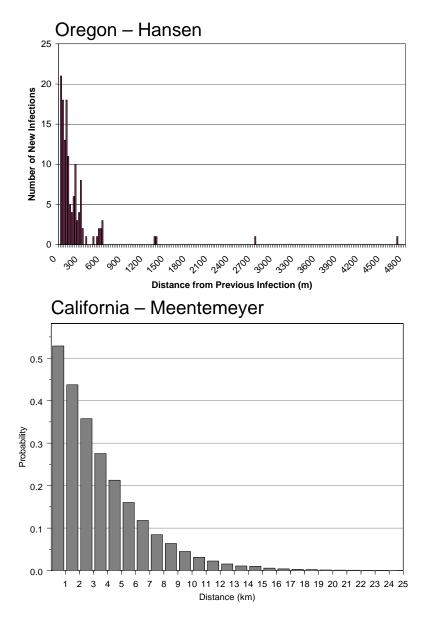
- Straight-line distance to nearest infected site
- Recalculated for each time step



Parameterization

- 2 distance decay studies are being explored
- Model is programmed based on these curves and other potential curves

$$\mathbf{P}_{t+1} \approx \frac{S * P * T * I * H}{D}$$

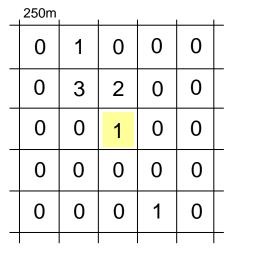


Surrounding disease levels (I)

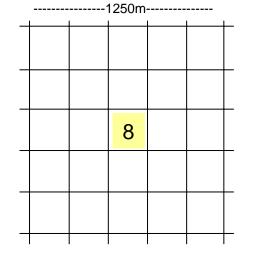
- <u>Assumption</u>: higher pathogen abundance in surrounding cells increases chance of infection
- In the model
 - Output an index of pathogen abundance at each time step
 - i.e. the count that each cell has been infected

_

To account for surrounding disease levels, sum the counts within a 1250m rectangle and scale to 10 pts



Output from previous example

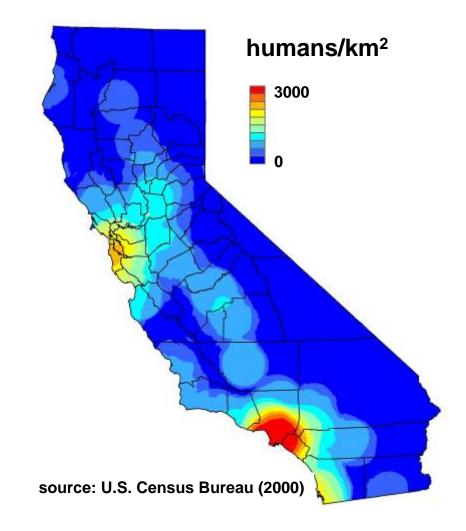


 $P_{t+1} \approx \frac{S * P * T * I * H}{D}$

Output of surrounding pathogen abundance for an individual cell

Potential long-distance vectors

- *P. ramorum* disperses locally through several physical pathways
 - i.e. rain splash, wind-driven rain, stream water
- Human activity poses highest risk for longdistance dispersal
- Human population density
 within 50km radius areas

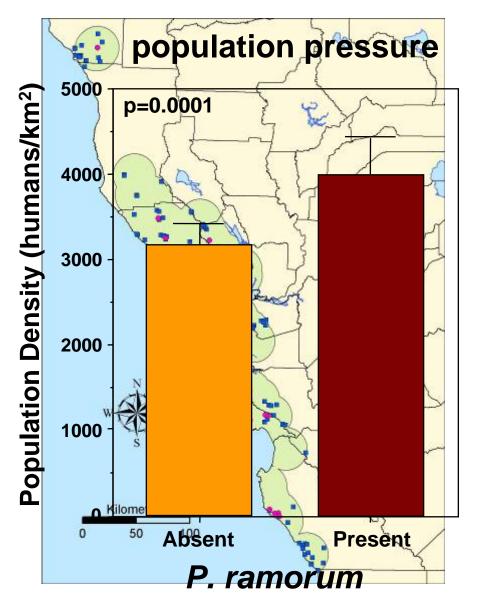


Potential long-distance vectors (H)

Parameterization

- Logistic regression
- Response variable
 - Presence/absence
 - Statewide foliar survey data (Meentemeyer) n=166
- Determine relationship between pop density and infection probability while controlling for host vegetation and climate
- Scale probabilities to 10 point scale for integration with other parameters

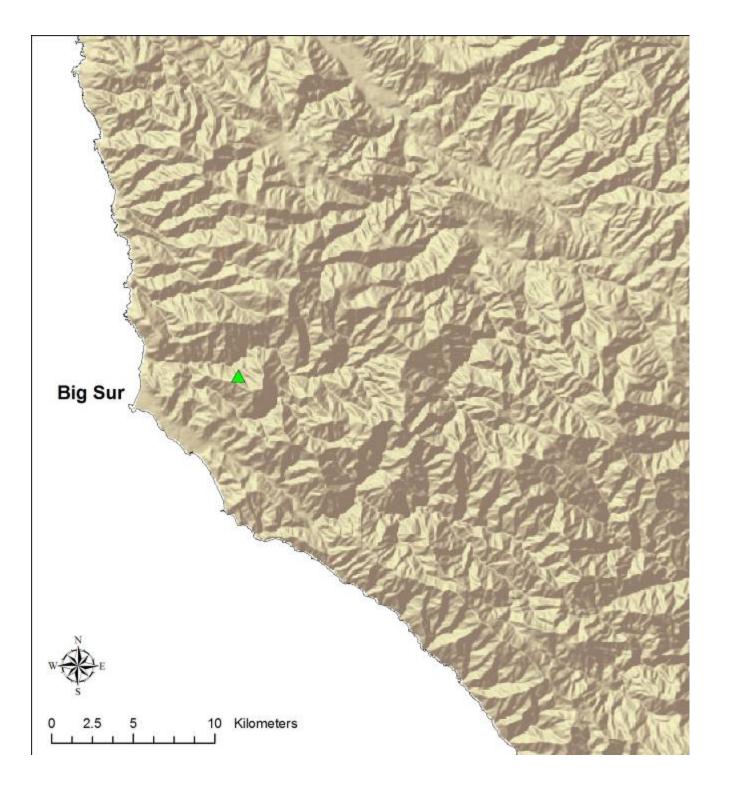
$$\mathbf{P}_{t+1} \approx \frac{S * P * T * I * H}{D}$$

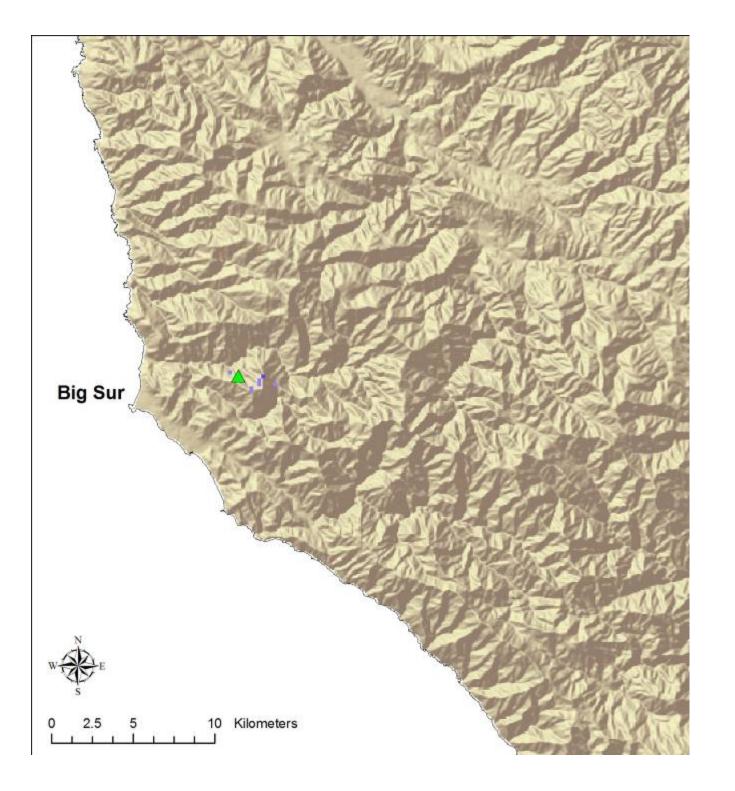


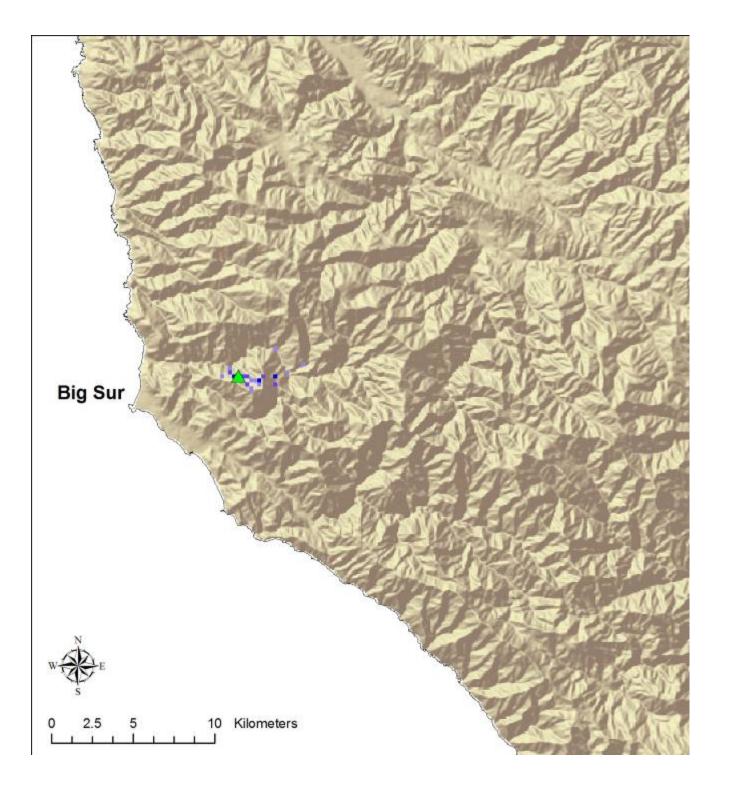
Applying the model

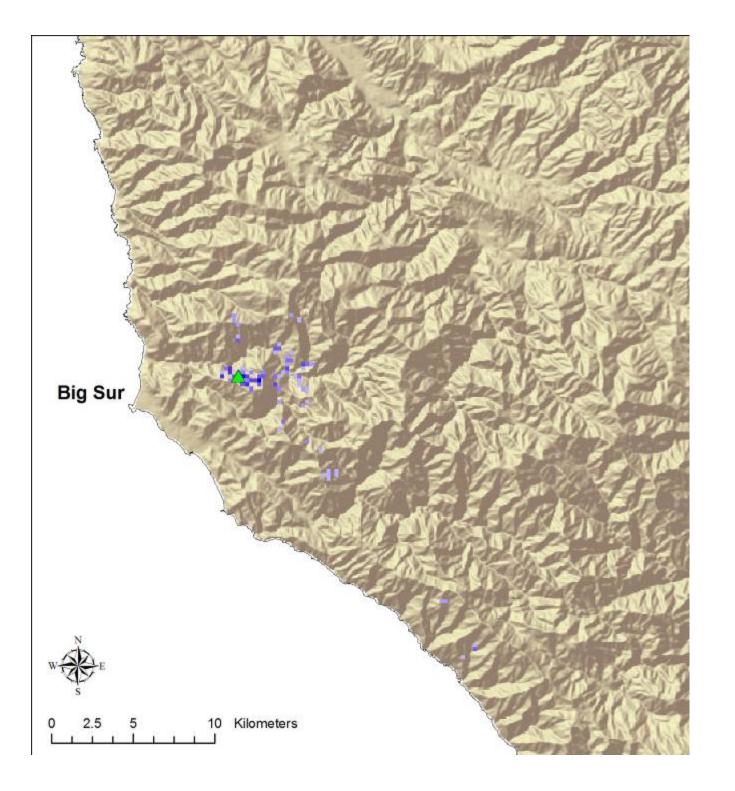
Example model run

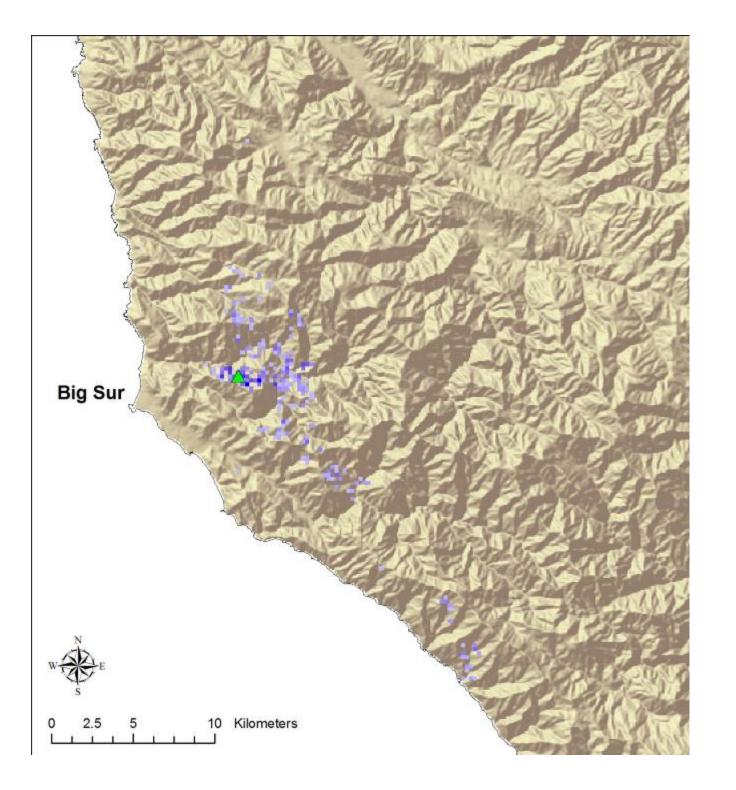
- Initiated spread with a single infected cell
 - Large patch of highly susceptible vegetation near Big Sur
- Initiated in 1985
 - Weekly time step through Dec 2003

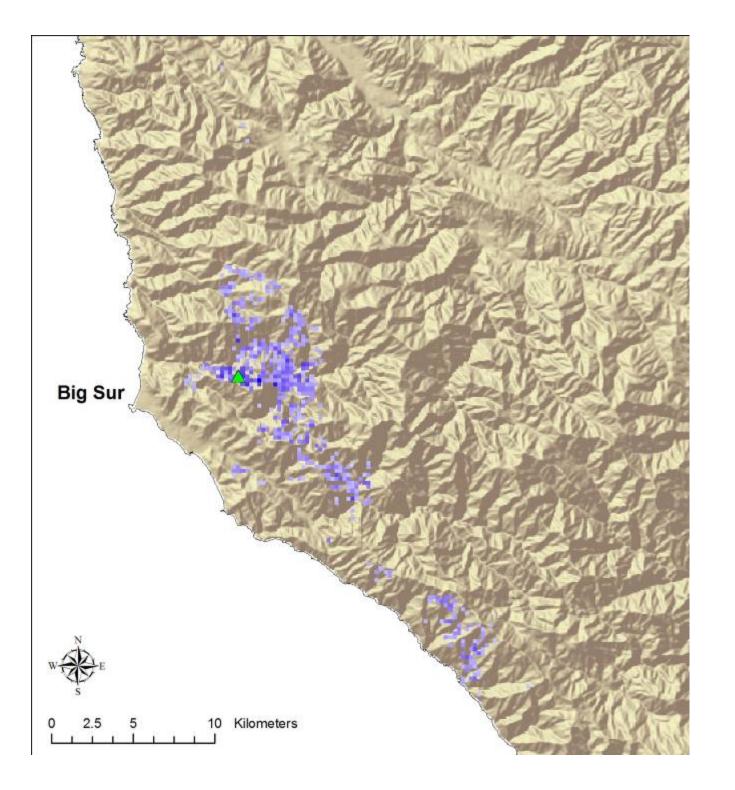


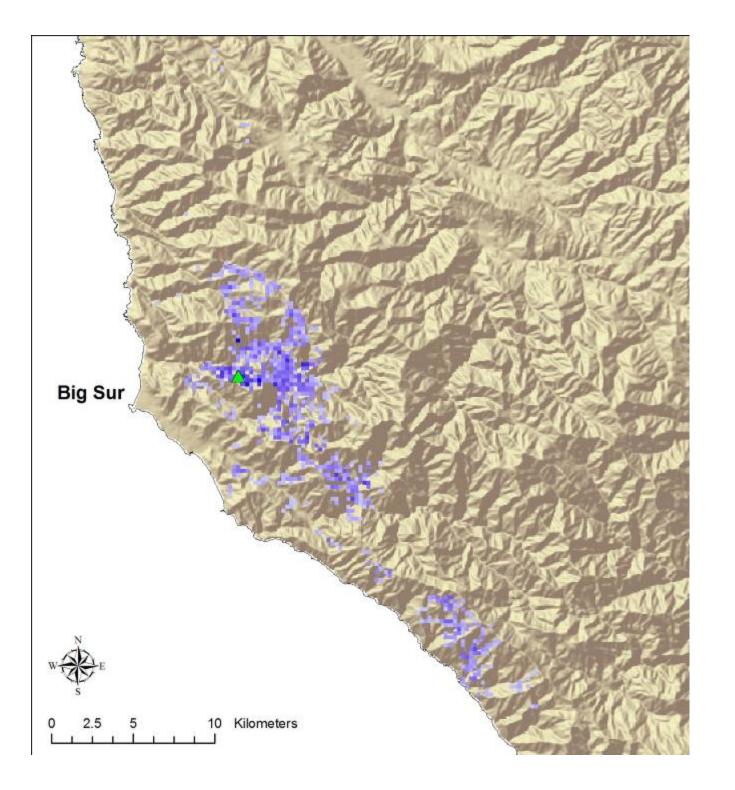


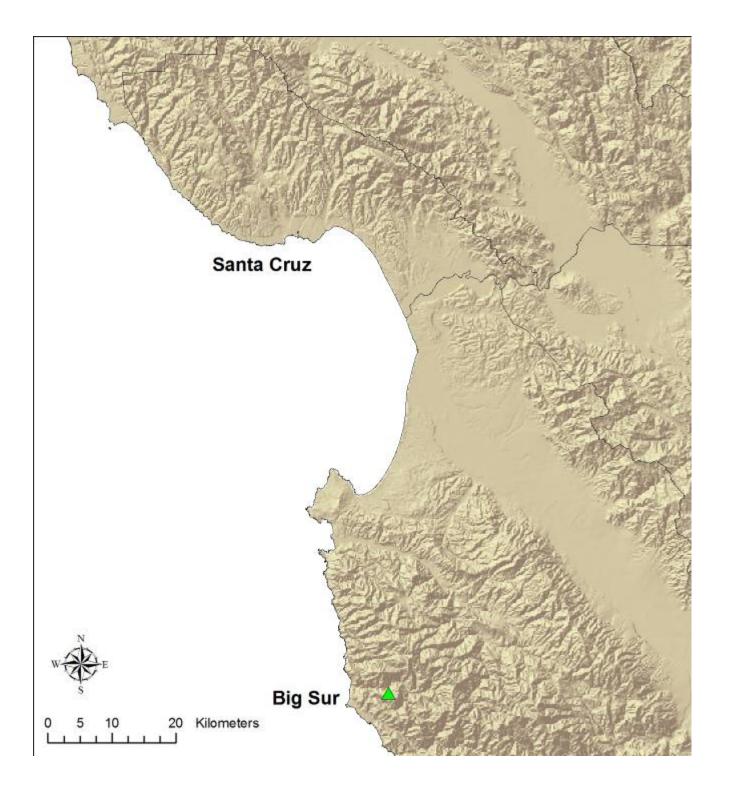


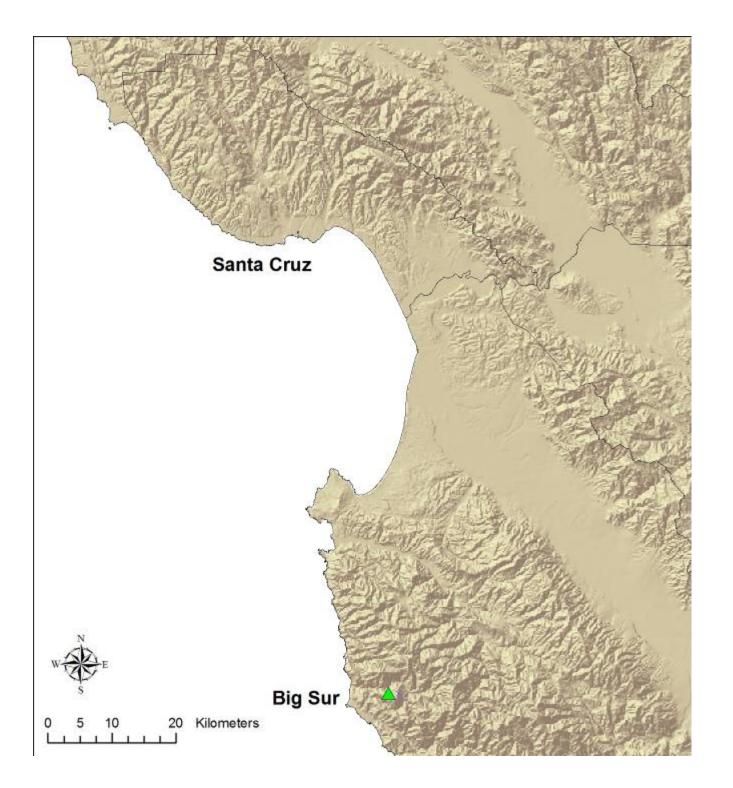


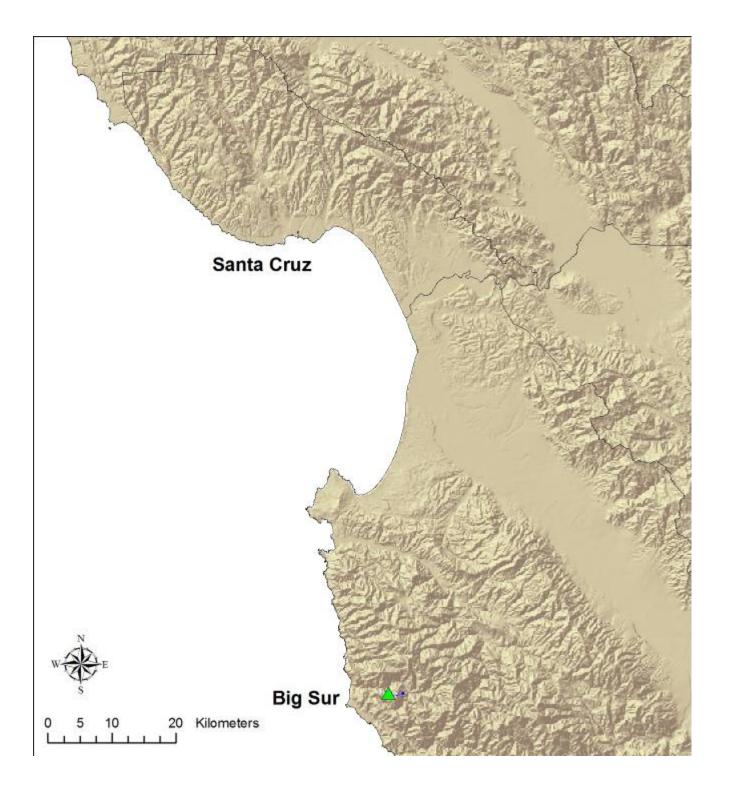


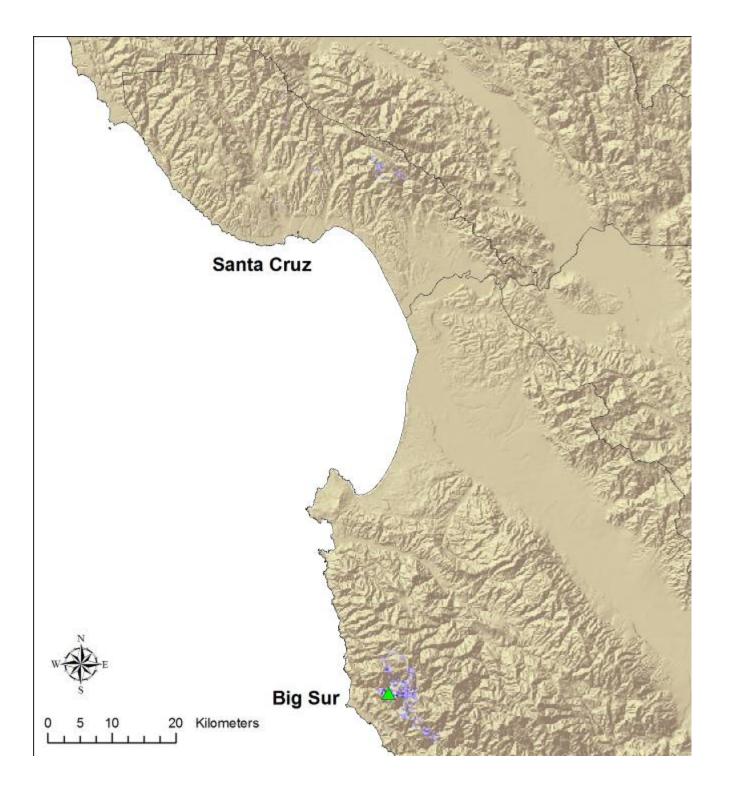


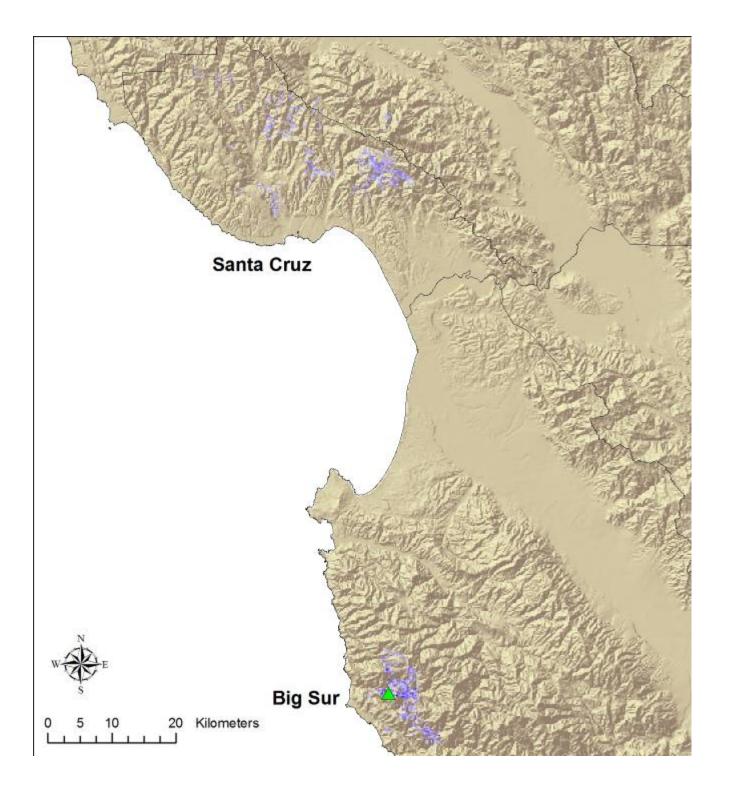


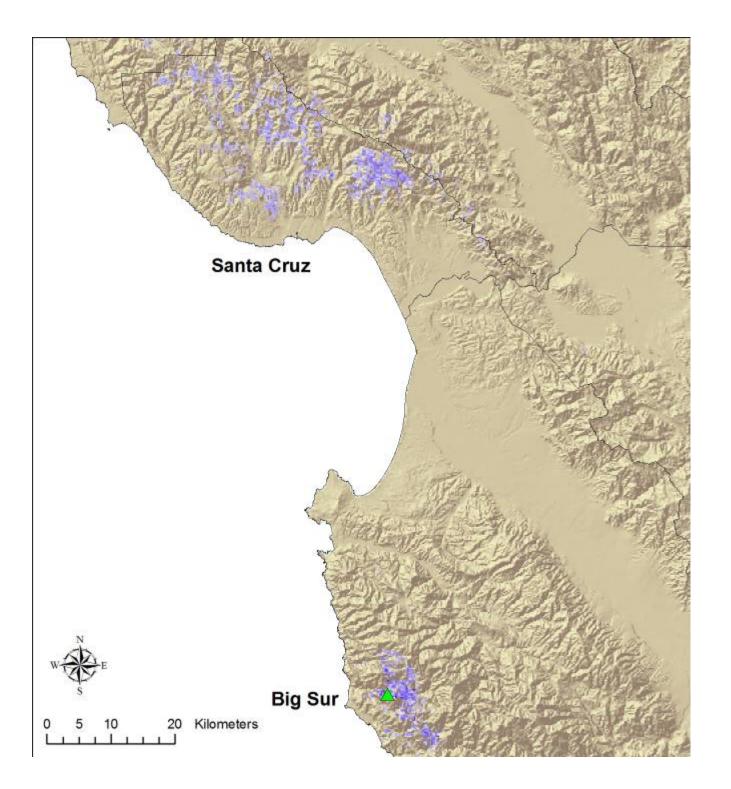


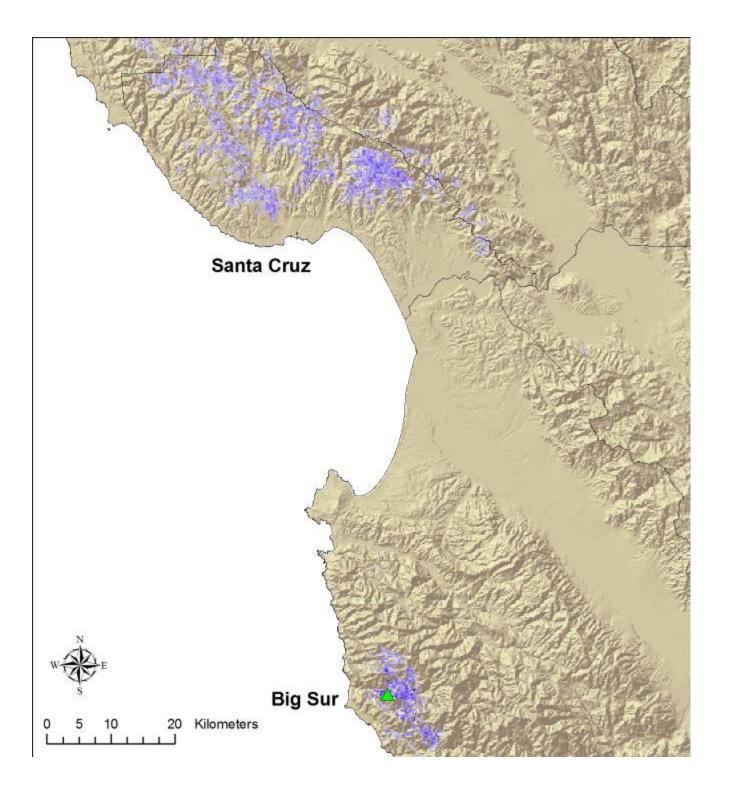












Model Evaluation

- Compare output maps with observed disease distribution
 - Run model 10 times
 - Assess predicted vs.
 observed infected area within 100 5k blocks
- Evaluate magnitude and direction of error and determine predictive accuracy
- Conduct sensitivity analysis of parameters

Additional research questions

- Test hypotheses about dispersal and infection processes
 - Influence of weather events
 - Simulate management scenarios

Significance

- Critical for predicting and slowing the spread of *P. ramorum* and other invasive species
 - Incorporate spatial and temporal heterogeneity of environmental conditions into spread modeling
 - Focus management efforts on high-risk landscapes
 - Test alternate management scenarios

