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Support vector machines for predicting distribution of Sudden
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Abstract

In the central California coastal forests, a newly discovered virulent pathogen (Phytophthora ramorum) has killed hundreds
of thousands of native oak trees. Predicting the potential distribution of the disease in California remains an urgent demand
of regulators and scientists. Most methods used to map potential ranges of species (e.g. multivariate or logistic regression)
require both presence and absence data, the latter of which are not always feasibly collected, and thus the methods often require
the generation of ‘pseudo’ absence data. Other methods (e.g. BIOCLIM and DOMAIN) seek to model the presence-only data
directly. In this study, we present alternative methods to conventional approaches to modeling by developing support vector
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achines (SVMs), which are the new generation of machine learning algorithms used to find optimal separability
lasses within datasets, to predict the potential distribution of Sudden Oak Death in California. We compared the per
f two types of SVMs models: two-class SVMs with ‘pseudo’ absence data and one-class SVMs. Both models perfor
he one-class SVMs have a slightly better true-positive rate (0.9272± 0.0460 S.D.) than the two-class SVMs (0.9105± 0.0712
.D.). However, the area predicted to be at risk for the disease using the one-class SVMs (18,441 km2) is much larger than th
f the two-class SVMs (13,828 km2). Both models show that the majority of disease risk will occur in coastal areas. Com
ith the results of two-class SVMs, the one-class SVMs predict a potential risk in the foothills of the Sierra Nevada m

anges; much greater risks are also found in Los Angles and Humboldt Counties. We believe the support vector mach
oupled with geographic information system (GIS) will be a useful method to deal with presence-only data in ecologica
ver a range of scales.
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1. Introduction

In the central California coastal forests, a newly
discovered virulent pathogen (Phytophthora ramorum)
has killed hundreds of thousands of native trees includ-
ing tanoak (Lithocarpus densiflorus), coast live oak
(Quercus agrifolia), and black oak (Quercus kelloggii)
(Rizzo et al., 2002; Rizzo and Garbelotto, 2003). The
disease was quickly and convincingly dubbed “Sud-

den Oak Death” (SOD) by both the popular press and
the research community (Garbelotto et al., 2001; Rizzo
et al., 2002). The state of California has dedicated
millions of dollars for management of the disease,
and a monitoring system has been implemented for
the state’s forests. As of June 2004, the disease ex-
isted in 13 coastal counties in the state, and hosts for
the disease exist throughout the Californian coastal
and foothill forests (Fig. 1). Predicting the potential
Fig. 1. Sudden Oak Death in
 California as of June 2004.
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distribution of the disease in California remains an ur-
gent demand of regulators and scientists alike, and re-
quires innovative approaches to modeling its potential
spread.

Since the existence and dispersal of any pathogen
is likely influenced by environmental conditions such
as humidity, temperature, and elevation, niche models
that combine known localities of a given species with
layers of meaningful ecological data can be used to ex-
trapolate suitable environmental parameters for a given
species (Franklin, 1995). Researchers have demon-
strated that environmental niche models are power-
ful tools for predicting the potential distribution and
spread of a disease or invasive species (Peterson and
Vieglais, 2001; Peterson et al., 2002; Welk et al., 2002;
Beard et al., 2003). Methods used to predict species
distributions in niche models consist of various sta-
tistical approaches such as linear, multivariate, and
logistic regression (Mladenoff et al., 1995; Bian and
West, 1997; Kelly et al., 2001; Felicisimo et al., 2002;
Fonseca et al., 2002), generalized linear modeling and
generalized additive modeling (Frescino et al., 2001;
Guisan et al., 2002), discriminant analysis (Livingston
et al., 1990; Fielding and Haworth, 1995; Manel et
al., 1999), classification and regression tree analyses
(De’ath and Fabricius, 2000; Fabricius and De’ath,
2001; Kelly, 2002), genetic algorithms (Stockwell and
Peters, 1999), and artificial neural networks (Manel
et al., 1999; Spitz and Lek, 1999; Moisen and Frescino,
2002).
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The traditional approach to statistical modeling
when only presence data is collected is to generate
‘pseudo’ absence data (Zaniewski et al., 2002). There
are problems with this, however, among them the fact
that in generating ‘pseudo’ absence data, one will likely
affect the prediction accuracy by sampling the po-
tential distribution area. As an alternative approach,
some researchers have proposed the direct model-
ing of presence-only data, avoiding the generation of
‘pseudo’ absence data. Examples of this approach in-
clude BIOCLIM (Busby, 1986), DOMAIN (Carpenter
et al., 1993) and ENFA models (Hirzel et al., 2002),
which have been successfully applied in various eco-
logical studies. There are other newer modeling meth-
ods that show promise, among these are support vector
machines (SVMs).

1.1. Support Vector Machines

In recent years, with the advance of computa-
tional efficiency combined with sophisticated statis-
tical methods, machine learning methods have been
increasingly used and shown as powerful tools in a
wide variety of science disciplines including plane-
tary science, computer science, bioinformatics, and en-
vironmental science (Mjolsness and DeCoste, 2001).
Among many machine-learning methods, SVMs, orig-
inally developed byVapnik (1995), are considered to
be a new generation of learning algorithms. SVMs
have several appealing characteristics for modelers, in-
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l they
t
S ss-
f n,
g las-
s od
a very
c ca-
t t of
m 0;
C nd
S

ob-
l xist.
F seek
t axi-
m y, as
These methods require data on species presenc
bsence to establish a statistical relationship. H
ver, in reality, many types of ecological datasets
hose collected by museums or on wildlife surve
ack reliable absence data. Such is the case with
en Oak Death. Confirmation ofP. ramorumis a time-
onsuming process that involves culturing the patho
rom material removed from the border of an infec
anker. After about a week, the pathogen can be
ified based on morphological traits (Garbelotto et al
001). However, while negative samples are repor

hese are not used for disease management, no
hey used to determine regulation such as quara
oundaries, due to the large potential for false n

ives caused by seasonality of sample, species of
nd time to lab. Because of the false-negative rate,
tive samples are not used as proxies for absence

n this case.
luding: they are statistically based models rather
oose analogies with natural learning systems, and
heoretically guarantee performance (Cristianini and
cholkopf, 2002). SVMs have been applied succe

ully to text categorization, handwriting recognitio
ene-function prediction, and remote sensing c
ification, demonstrating the utility of the meth
cross disciplines, and proving that SVMs produce
ompetitive results with the best available classifi
ion methods, and require just a minimum amoun
odel tuning (Joachims, 1998; Brown et al., 200
ristianini and Scholkopf, 2002; Decoste a
cholkopf, 2002; Huang et al., 2002).
Typically, SVMs are designed for two-class pr

ems where both positive and negative objects e
or these classification problems, two-class SVMs

o find a hyperplane in the feature space that m
ally separates the two target classes. In realit
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mentioned above, we often do not have negative data,
and thus commonly have only a one-class dataset. For
example, in a handwritten number recognition prob-
lem, suppose that we are trying to classify the hand-
writing number “3” when we only have as a sample
a set of handwritten “3”s. Here we need to develop
a classifier to identify whether the target-handwritten
number is a “3,” without examples of what is not a
“3.” A parallel exists in ecology, where many museum-
collected records exist in presence-only format; these
data are often used to predict the potential distribu-
tion of a species. These are common one-class prob-
lems, which require the separation of a target class
from the rest of the feature space. Computationally,
the one-class problem is more difficult to solve than
the traditional two-class problem, because the latter
has positive and negative data to train and constrain
the statistical learning models, while the former only
has positive data to constraint the model (Tax and Duin,
1999b).

Recently,Scholkopf et al. (1999)developed one-
class SVMs to deal with the one-class problem. In
Scholkopf’s experiment, he used one-class SVMs to
classify the handwriting numbers “0.” He achieved
91% accuracy in recognition of handwritten “0s,” with
a low false positive rate of 7%. The method has proved
useful in other venues, and other applications of one-
class SVMs include document classification (distin-
guishing one specific category from other categories)
(Manevitz and Yousef, 2002), texture segmentation
( res)
( a
s iven
q

ques
t eval-
u ul in
m elp-
i esult
o ob-
j Ms
i ak
D he
r ded
b ata,
a the
S nal
s

2. Method and materials

2.1. Data

The training data used in this study were locations
of confirmedP. ramorumin California. These data are
routinely provided to the monitoring community as part
of the management and regulatory function of the Cal-
ifornia Oak Mortality Task Force (COMTF). We used
the distribution ofP. ramorumsamples in 13 California
counties as of June 2004 (Fig. 1). A hand-held GPS was
used in the field with each sample to collect location
information. Accuracy was reported with the sample,
and when an offset greater than 100 m was reported, a
second visit with a GPS was completed. All spatial lo-
cation data are stored in a common projection system
(Kelly and Tuxen, 2003). Spatial distribution of host
species was provided by the California GAP dataset.
The California GAP Analysis Project produces maps at
relatively low spatial detail (e.g., 1:100,000 map scale,
100 ha MMU) to provide a broad overview of the dis-
tribution of biota and their management status, and to
identify landscapes that contain large numbers of po-
tentially unprotected vegetation types and vertebrate
species (Davis et al., 1998). Vegetation types are identi-
fied by one to three overstory species, each contributing
greater than 20% of relative canopy cover. These are
labeled primary (most abundant), secondary (second-
most abundant), and tertiary (third-most abundant) lev-
els. The vegetation map was produced for the state
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distinguishing one specific texture from other textu
Tax and Duin, 2002), and image retrieval (retrieving
ubset of images based on the similarity between g
uery images) (Lai et al., 2002).

We wanted to use these machine learning techni
o approach the Sudden Oak Death problem, and
ate whether these new methods might be usef
odeling potential risk for the disease, as well as h

ng solve the one-class problem we have as a r
f only having reliable presence data. Thus, the

ective of this study is to evaluate the use of SV
n mapping the potential distribution of Sudden O
eath in California. Specifically, we will compare t

esults provided by one-class SVMs with that provi
y two-class SVMs used with ‘pseudo’ absence d
nd provide a discussion of the relative merits of
VM models in comparison to other more traditio
tatistical models.
sing summer 1990 Landsat Thematic Mapper (T
atellite imagery, 1990 high altitude color infrared p
ography (1:58,000 scale), VTM maps based on
urveys conducted between 1928 and 1940, and
ellaneous recent vegetation maps and ground su
Davis et al., 1998).

Selection criteria for the host layer were all po
ons containing any of the host species listed
ttp://www.suddenoakdeath.org/in any of the thre

evels (primary, secondary, and tertiary). These
lude Big leaf maple (Acer macrophyllum), California
ay laurel (Umbellularia californica), California black
ak (Quercus kelloggii), California buckeye (Aesculus
alifornica), California coffeeberry (Rhamnus califor
ica), California hazelnut (Corylus cornuta), Canyon

ive oak (Quercus chrysolepis), Cascara (Rhamnuspur
hiana), Coast live oak (Q. agrifolia), Huckleberry
Vaccinium ovatum), Madrone (Arbutus menziesii),

http://www.suddenoakdeath.org/
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Rhododendron (Rhododendronspp.), Tanoak (L. den-
siflorus) and Toyon (Heteromeles arbutifolia). This list
does not contain all hosts, as some (e.g.Viburnum,
California honeysuckle) are not listed as a primary,
secondary, or tertiary species in any of the top three
co-dominant species lists in the Cal GAP dataset.

Our goal was to predict if trees in presently un-
infested areas are potentially likely to be infected by
the pathogen. We thus made the assumption that if
the host plants share similar conditions (both envi-
ronmental and anthropogenic conditions) with those
in areas with confirmed Sudden Oak Death, they are
more likely to be potential targets forP. ramorum.
We used 14 environmental variables to train the model
and predict the potential distribution for the pathogen.
The variables included: annual mean temperature, an-
nual mean precipitation, mean temperature in January,
April, July, and October, mean precipitation in January,
April, July, and October, annual mean solar radiation,
distance to main roads, distance to the edge of patches
of hosts, and elevation. California climate data were
extracted from the DAYMET conterminous United
States database (http://www.daymet.org/). DAYMET
database was developed by Numerical Terradynamic
Simulation Group at the School of Forestry, Univer-
sity of Montana. DAYMET is a model that generates
temperature, precipitation, and solar radiation by using
digital elevation models and ground-based meteorolog-
ical data. The spatial resolution of DAYMET database
is 1 km by 1 km. All the following analyses were based
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play a role in disease occurrence (Kelly, 2002; Rizzo
et al., 2002). We chose to use distance to roads as a
proxy for the anthropogenic dispersal variables. Dis-
tance to edges of forest patches has been shown to
strongly correspond to the presence of the disease
(Kelly, 2002). Because the unit dimensions among
those variables vary dramatically, each layer was
rescaled to values from−1 to 1 by using minimum and
maximum values (Chang and Lin, 2001). All 14 layers
were used in the calculation of the SVMs as described
below.

2.2. One-class SVMs

Assuming we havel training pointsxi (i = 1, 2,. . .,
l), we want to find a hypersphere as small as possible to
contain the training points in multidimensional space.
Meanwhile, we also allow a small portion of outliers
to exist using a slack variable (ξi):

Min R2 + 1

vl

∑
i

ξi (1)

Subject to:

(xi − c)T(xi − c) ≤ R2 + ξi, ξi ≥ 0 for all i ∈ [l] (2)

wherecandRare the center and radius of the sphere, T
is the transpose of a matrix, andv ∈ (0, 1] is the trade-
off between volume of the sphere and the number of
t f
t re-
j ts
w y
e ning
d
t

La-
g

n 1 km2 resolution. Multiple confirmed Sudden O
eath samples that are distributed within a same
ere removed and only one sample retained, yiel
66 sample points used in this study.

Our rationale for the choice of the environmen
ariables is described as follows. We used the tem
ture and precipitation variables because we know
. ramorumhas temperature and moisture requirem
Rizzo et al., 2002). Because the seasonality of clim
ffects species distributions (Paruelo and Lauenrot
996; Weltzin and McPherson, 2000), we chose mea

emperature and precipitation in January, April, J
nd October to capture such seasonality. In addition
now that seasonality of climate may play a signific
ole in the distribution of this pathogen. For exampleP.
amorumdoes not favor dry and hot summer conditi
ound in inland and southern California (Rizzo et al.
002). We also know that solar radiation and eleva
raining points rejected. Whenv is large, the volume o
he sphere is small so more training points will be
ected than whenv is small, where more training poin
ill be contained within the sphere.v can be roughl
xplained as the percentage of outliers in the trai
ataset (Scholkopf et al., 2001). We will describe how

o choose thev value in the later section.
This optimization problem can be solved by the

rangian:

L(R, ξ, c, ai, βi)

= R2 + 1

vl

l∑
i=1

ζi

−
l∑

i=1

ai{R2 + ζi − (xi
2 − 2cxi + c2)} −

l∑
i=1

βiξi

(3)

http://www.daymet.org/


80 Q. Guo et al. / Ecological Modelling 182 (2005) 75–90

whereai ≥ 0 andβi ≥ 0. Setting the partial derivative
of L with respect toR, ai , andc equal to 0, we get:

l∑
i=1

ai = 1 (4)

0 ≤ ai ≤ 1

vl
(5)

c =
l∑

i=1

aixi (6)

Substituting Eqs.(4)–(6) to Eq.(3), we have the dual
problem:

min
a

∑
i,j

aiaj(xi · xj) −
∑

i
ai(xi · xi) (7)

Subject to:

0 ≤ ai ≤ 1

vl
,

l∑
i=1

ai = 1

To determine whether or not a test point (x) is within
the sphere, we can calculate the distance between the
test point and the centerC. It can be expressed as:

(x · x) − 2
∑

i

ai(x · xi) +
∑

aiaj(xi · xj) ≤ R2 (8)

So far, we have assumed that the data are spherically
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et al., 2001):

K(xi, xj) = e−(xi−xj)2/S2
(10)

whereS is the kernel width. The Gaussian kernel was
applied in this study. It should be noted that the one-
class SVMs method discussed above was proposed by
Tax and Duin (1999); Scholkopf et al. (1999)proposed
another version to find a hyperplane to separate the
training data from the origin with maximum margin.
For the Gaussian kernel, these two methods are equiv-
alent (Scholkopf et al., 2001). We implemented the one-
class SVMs by the modified version of LIBSVM—a li-
brary for support vector machines developed byChang
and Lin (2001). A more detailed mathematical deriva-
tion of one-class SVMs can be found inScholkopf
et al. (1999), andTax and Duin (1999a).

2.3. Two-class SVMs

Consider a set of training pointsxi (i = 1, 2, . . .,
l) which are assigned to one of two classes with cor-
responding labelsyi = ±1. The goal of the two-class
SVMs is to find an optimal separating hyperplane with
the maximal margin between the training points for
class−1 and class +1. Define a discriminant function:

g(x) = (w · x) + b (11)

wherew = (w1, . . ., wn) is a vector ofn elements,n is
t
r

f

f
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istributed. In reality, the data are often not spheric
istributed. To make the method more flexible to
ount for this issue and capture the non-linearity s
s multi-mode distribution, the kernel functionK(xi ,
j) can be introduced. Basically, we express the in
roduct in Eq.(8) as the kernel function:

(x, x) − 2
∑

i

aik(x, xi) +
∑
i,j

aiajK(xi, xj) ≤ R2

(9)

Two types of kernels are often used: polynomial
aussian kernels, however, the former usually doe
roduce a tight description of the data and is sens

o outliers when the polynomial degree is high (Tax
nd Duin, 1999a). A more robust way is to constru

he Gaussian kernel, which has been commonly
or one-class SVMs (Tax and Duin, 1999a; Scholko
he dimension of the feature space;b is a scalar. (w · x)
epresents the inner product betweenw andx.

The classification rule is:

(x) = Sign((w · x) + b) (12)

(x) > 0 ⇒ x ∈ classyi = +1

(x) < 0 ⇒ x ∈ classyi = −1

ence, the optimization problem can be formulated

inimize
1

2
||w||2 (13)

ubject to:

i((w · xi) + b) ≥ 1 (14)



Q. Guo et al. / Ecological Modelling 182 (2005) 75–90 81

The problem can be solved by the Lagrangian:

L = 1

2
||w||2 −

l∑
i=1

ai(yi((w · xi) + b) − 1) (15)

whereai : i = 1, . . ., l; ai ≥ 0 are the Lagrange multipli-
ers. Taken the derivative with respect tow andb, and
set to zero, we get:

w =
l∑

i=1

aiyixi (16)

l∑
i=1

aiyi = 0 (17)

Substituting (16) and (17) into (15) gives the dual
form of the Lagrangian:

L =
l∑

i=1

ai − 1

2

l∑
i=1

l∑
j=1

aiajyiyj(xi · xj) (18)

Subject to:

ai ≥ 0,

l∑
i=1

aiyi = 0 (19)

So far, what we have discussed above is suitable for
linearly separable cases. We now turn to more general
c
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The optimization problem of Eq.(18)becomes:

L =
l∑

i=1

ai − 1

2

l∑
i=1

l∑
j=1

aiajyiyjK(xi, xj) (22)

And the decision rule can be expressed as:

f (x) = Sign

(
Ns∑
i=1

aiyiK(xi, x) + b

)
(23)

whereNs is the number of support vectors.
More detailed mathematical description about two-
class SVMs can be found inHastie et al. (2001)and
Webb (2002).

3. Model implementations and evaluation

3.1. Cross-validation method

A five-fold cross-validation method was used to es-
timate the accuracy of the predicted model. The cross
validation was implemented as follows (Hastie et al.,
2001). First, the training data were randomly split into
five subsets of equal size. Second, each subset was in
turn used for accuracy testing and the remaining four
subsets for training. Finally, the total accuracy was
estimated by averaging the accuracy of each test. It
s tudy
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1) For linearly non-separable cases (e.g. some cl
overlap in the feature space), a slack variableξi (i
= 1,. . ., l) is introduced into the constraints to gi

yi((w · x) + b) ≥ 1 − ξi (20)

ξi ≥ 0

An additional term is introduced to the cost fu
tion by replacing (13) by:

Minimize
1

2
||w||2 + C

l∑
i=1

ξi (21)

whereC is a parameter to measure the amoun
penalty for misclassification.

2) For the non-linear decision boundary, simila
one-class SVMs, kernel functions are introduc
hould be noted that the accuracy reported in this s
y the cross-validation method represents true-pos
ate (= 1− false-negative rate). Ideally, a good mo
hould produce the results with high accuracy of b
rue-positive and true-negative rate (=1− false-positive
ate). Due to the lack of true absence data when de
ith presence-only data, we were unable to estimat

rue-negative rate. However, we used the predicted
o aid the evaluation of the model performances.
dea is that it is easy to overfit the model, resultin
00% true-positive rate, and consequently overpre

ng the potential distribution. For example, a predic
rea covering the whole study area will have 10

rue-positive rate, but this result is most likely inc
ect. Engler et al. (2004)propose that a good mod
rediction with presence-only data should predict a

ential area as small as possible while still coverin
aximum number of the species occurrences.
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3.2. Implementing one-class SVMs

For the one-class SVMs, it is important to choose
v ∈ (0, 1] in Eq.(1).v is the trade-off between volume of
the sphere and the number of training points rejected.v

can be roughly explained as the percentage of outliers in
the training dataset (Scholkopf et al., 2001). To decide
the suitablev value for our one-class SVMs model, we
plotted a range ofv values against true-positive rate. In
addition, the relationship between thev value and pre-
dicted area was also examined to guide the selection
of the parameter. As shown inFig. 2, the true-positive
rate increase linearly whenv decreases from 1.0 to 0.1.
The true-positive rate levels off at around 92% when
v decreases to 0.04. Similarly, the predicted area in-
creases with the decrease ofv values. Because the risk
of Sudden Oak Death is our most important concern,
we seek to minimize the false-negative rate (potential
Sudden Oak Death that is rejected). We are interested
in upper left corner ofFig. 2 where the true-positive
rates (=1− false-negative rate) are high (>90%). In
this study, we chosev to be 0.04 because the true-
positive rate does not increase whenv further decreases,
while the predicted area will continue to grow with a
smallerv.

and tru

3.3. Implementing two-class SVMs

The two-class SVMs require both absence and pres-
ence data to train the model. Since there is no absence
data for presence-only data, one solution is to gener-
ate ‘pseudo’ absence data. The ‘pseudo’ absence data
were generated by randomly sampling 166 uninfested
grid points (equal number of presence data) out of the
total host data (n = 101045, 1 km× 1 km grid points).
Because the final prediction results will vary with each
generation of ‘pseudo’ absence data, we repeated the
sampling procedure 1000 times. The common accuracy
measures between the one-class and two-class SVMs
are the true-positive rate and prediction areas. We re-
ported the mean and standard deviation of these two
measures for direct comparisons between the SVMs
models.

We also compared the final prediction results be-
tween the one-class SVMs and two-class SVMs. How-
ever, unlike the one-class SVMs that produce a unique
potential map, the two-class SVMs will result in dif-
ferent potential distribution maps in each generation of
‘pseudo’ absence data. In order to obtain a single map
from the results of two-class SVMs, we applied the
majority rule to decide whether an area will be poten-
Fig. 2. Relationship betweenv
 e-positive rate/predicted area.
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tially at risk for Sudden Oak Death, and assigned a grid
pixel to a class (either presence or absence) reflecting
the majority class type in 1000 prediction maps.

4. Results

The average (±standard deviation) true-positive
rate of the five-fold cross-validation method for the
one-class SVMs method was 0.9272± 0.0460; the
model predicted the potential Sudden Oak Death over
18,441 km2. For the two-class SVMs method, the av-
erage (±standard deviation) true-positive rate in 1000
simulations is 0.9105± 0.0712, and the predicted area
at risk for the disease was 13,828± 1316 km2. The
average true-positive rate of the one-class SVMs was
greater than that of the two-class SVMs. However, the
area predicted to be at risk for the disease using the
one-class model was also greater than that of the two-
class method. The standard deviation reported for the
one-class method is derived from the five-fold cross-
validation results only, while the standard deviation re-
ported for the two-class method includes the variance
from both the five-fold cross validation, and the 1000
simulations of ‘pseudo’ absence data. After completing
the five-fold cross validation, we used all the training
data to produce the final risk maps, consequently, for
the one-class method, we only have one mapped result
predicting risk, but for the two-class method, we are
able to report the mean value and standard deviation
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There are important regional differences between
the models. In the north part of the state (Fig. 4) the
one-class method resulted in several distinct and sig-
nificant areas of risk in Humboldt, Trinity, and Men-
docino Counties (Fig. 4A), while the two-class method
mirrored that of the one-class method in Mendocino
County, with the exception of an increase toward the
north of the County, and a decrease in risk predic-
tion toward the coast. In the south portion of the state,
the one-class method predicted significantly more risk
in San Luis Obispo woodlands and predicted a new
pocket of risk in Los Angeles County, but predicted
less risk in Santa Barbara County than did the two-
class method (Fig. 5). The Sierra Nevada foothills
provide the greatest difference between the model re-
sults (Fig. 6). The Counties of Nevada, Placer, El Do-
rado, Amador, Calaveras, Tuolumne, Mariposa, and
Madera Counties, all hosting oak woodlands flanking
the Sierra Nevada mountain range, show predicted risk
for SOD according to the one-class model (Fig. 6A).
None of these areas are predicted to be risky by the
two-class method (Fig. 6B). Interestingly, the foothills
contain oak woodlands with a large component of black
oaks—one of the hosts forP. ramorum. In 2001,P.
ramorumwas cultured from a sample taken from the
Sierra Nevada foothills, but the results have not been
repeated to date.

5. Discussion
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f the predicted area due to the multiple simulati
equired.

The results from each method are mapped for
ntire state inFig. 3. The one-class model predi
ontinued risk for the disease in the coastal ar
s far north as Humboldt County and as far sout
os Angeles County. The Sierra Nevada foothills a
how potential risk for the disease (Fig. 3A). The two-
lass method shows less risk in these areas, an
lays a concentration of risk in the central coastal
f the state. Both models agree in the central co
rea of the state, suggesting a suitable environm
iche forP. ramorumthrough Monterey County’s re
ood/tanoak forests into San Luis Obispo, Ventura
anta Barbara Counties. These currently uninfe
ounties share very similar environmental conditi
ith the northern California counties that are alre

nfested.
Sudden Oak Death has the potential to affect
iversity, fire risk, soil erosion and aesthetic value
ak landscapes in areas similar to the California fo
here it has reached epidemic proportions (Kelly,
002; Rizzo and Garbelotto, 2003). As with other dis
ases, the mechanisms underlying the dispersal
an be pursued from a variety of approaches and
ial scales, and spatial modeling of the dispersal p
ays of the causal pathogens remains an importan
uit (Thrall and Burdon, 1999). Indeed, developing
patially-explicit model of potential SOD spread is
mportant step in unraveling the nature of the epide

map of pathogen risk is an important backdrop
ther research and monitoring efforts. Thus, the m
roduced here can be used to target SOD monito

n high risk, but currently uninfested areas, alert
en groups in areas likely to hostP. ramorumto watch
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Fig. 3. Predicted area of SOD risk in California. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

for symptoms of the disease, and strengthen quarantine
regulations in areas of greater risk while lessening the
regulation in areas without the necessary environmen-
tal factors for harboring the disease.

Many ecological datasets (e.g. those collected by
museums or on wildlife surveys) lack reliable absence
data. Or if available, the absence data are often un-
reliable (e.g. from a mobile species) or meaningless
(e.g. invasive species) (Hirzel et al., 2002). A vari-
ety of methods have been proposed to deal with these
presence-only data. The majority of these methods use
traditional statistical approaches (e.g. multivariate or
logistic regression) by generating ‘pseudo’ absence
data. Others seek to model the presence-only data di-
rectly (e.g. BIOCLIM, ENFA, or DOMAIN). In this
study, we presented alternative methods to those ap-
proaches by using SVMs, and a discussion of their rel-
ative merits is useful here.

When compared with traditional statistical or learn-
ing models which are based on generations of ‘pseudo’
absence data in predicting species distributions, two-
class SVMs have two main advantages. First, the
methods are easy to use. Unlike many other ma-
chine learning algorithms, which rely on creativity and
extensive tuning of parameters by users, SVMs re-
quire a minimum of tuning (Cristianini and Scholkopf,
2002). Second, because SVMs are theoretically-based
models, combining optimization, statistics and func-

tional analysis to achieve maximum separation, they
have many appealing characteristics: SVMs are free
from local mimima, they are computationally efficient,
and they provide outstanding performance (Cristianini
and Scholkopf, 2002). When compared with methods
which model the presence-only data directly, one-class
SVMs have two advantages. First, one-class SVMs
seek to find an optimal hypersphere which contains
all or most of the training points, at the same time
tightly constraining the presence data in feature space.
By using kernels, one-class SVMs are able to repre-
sent various data distribution shapes in feature space
(e.g. banana shapes, sphere shapes, or even very ir-
regular shapes;Tax and Duin, 2002). Methods such as
BIOCLIM only use hyperboxes to contain the pres-
ence data, and are thus often unsuitable for other
forms of data that have irregular distributions in fea-
ture space. Second, because one-class SVMs seek to
find the boundaries of the hypersphere to contain pres-
ence data, they make no assumption on the probability
density of the data (Tax and Duin, 2002). This char-
acteristic is useful when the data do not follow an un-
derlying probability distribution (such as a normal dis-
tribution), or insufficient data are available to test the
distribution. For example, ENFA models require nor-
mality in the input variables, and violation of this could
potentially decrease accuracy in the resulting predic-
tion of species distributions (Engler et al., 2004). We
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Fig. 4. Predicted area of SOD risk in northern California. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

Fig. 5. Predicted area of SOD risk in southern California. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

have discussed the relative merits of SVMs versus other
model methods, but we would also like to compare
the relative strengths of the one- and two-class SVMs
themselves. When compared with two-class SVMs,
one-class SVMs have several advantages: first, one-
class SVMs do not need to generate ‘pseudo’ absence
data. Because each generation of random ‘pseudo’

absence data will produce different results, a signifi-
cant number of simulations are needed to give a ro-
bust estimation of the potential distribution of nega-
tive data. Hence, presence-only models are computa-
tionally more efficient. Second, one-class SVMs are
particularly suitable for cases where absence data are
unreliable (e.g. mobile animals) or meaningless (e.g.
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Fig. 6. Predicted area of SOD risk in the Sierra Nevada area. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

invasive species), therefore, the generation of pseudo-
absence data will inevitably sample areas suitable for
the species and could result in a prediction of species
distributions that is too restrictive.

The average true-positive rate of the one-class
SVMs (0.9272) is better than that of the two-class
SVMs used with ‘pseudo’ absence data (0.9105). How-
ever, the predicted area of disease risk provided by the
one-class SVMs (18,441 km2) also is much greater than
that by the two-class SVMs (13,828 km2), which may
suggest over-prediction. Indeed, there is a trade-off be-
tween the over-prediction provided by an expansive
one-class model, and under prediction produced by the
necessary selection of ‘pseudo’ absence data in the two-
class model.Engler et al. (2004)andZaniewski et al.
(2002)have found that the lack of absence data in one-
class models can result in an over-prediction of species
distributions. While it is often true that a higher true-
positive rate is associated with higher false-positive rate
and result in larger prediction area, in our study, one-
class SVMs had a lower false-negative rate (potential
SOD that is falsely rejected by the model) than did the
two-class method.

Another explanation of the difference between the
models is that methods based on generating ‘pseudo’
absence data will likely sample both ‘true absence’
and ‘potential presence’ habitats. The mis-sampling the

‘potential presence’ data as ‘pseudo’ absence data in
models will necessarily push the decision boundary in
the SVM model toward the potential presence habitats
and tend to produce a more restrictive prediction. For
invasive species that have not yet reached all their po-
tential habitats, ‘pseudo’ absence models are likely to
erroneously sample areas with potential habitats, and
result in a more constrained mapped prediction.Hirzel
et al. (2001)showed that models using presence-only
data have proven to be superior to ones using both pres-
ence and absence data in the case of invasive species
modeling. Conversely, without absence data, models
using presence-only data could include areas where the
presence habitats overlap with the true absence habitats
as expressed by the environmental features. One way
to reduce the over-prediction in one-class SVMs is to
control the parameterv ∈ (0, 1] in equation 1, which
can be roughly explained as the percentage of outliers
or non-representative samples (e.g. share the similar
feature spaces with true absence habitats) in the train-
ing dataset. By tuning thev value, we are able to control
decision boundary between the presence habitats and
true absence habitats. The greater thev value, the more
training points will be rejected, and consequently the
area of potential distribution contracts.

It should be noted that the models described so far
are mainly statistical models, which are used to predict
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species distributions based on similarity between test
points and confirmed samples in the environmental
space. Alternatively, process-based models, which use
detailed ecological parameters to simulate the inter-
action process between species and the environment,
have also been successfully applied in predicting po-
tential species distributions (Sutherst and Maywald,
1985; Yonow et al., 2004). Process-based models can
be used to test hypothesis, estimate important ecologi-
cal parameters, and provide insights on ecological pro-
cess, however, process-based models often do not sat-
isfy the immediate needs of conservationists faced with
insufficient information on ecological mechanisms or
a lack of detailed parameters needed to run the mod-
els (Carpenter et al., 1993), in which case, researchers
often rely on statistical models.

It is important to note that mapped potential dis-
tribution of the pathogen does not mean that an area
will necessarily become infected. Areas of predicted
high risk indicate that those areas share similar envi-
ronmental niches with areas of confirmed Sudden Oak
Death, and therefore are possible locales forP. ramo-
rum to survive. But management and regulation can
impact the spread of the disease. The SOD pathogen
can spread through aerial dispersal (Davidson et al.,
2001; Davidson et al., 2002), in combination with high
levels of inoculum production, and high levels of vir-

y area. SVMs.

ulence (Swiecki, 2001). The presence of certain host
species such as California Bay has been shown to assist
in pathogen dispersal (Kelly and Meentemeyer, 2002;
Rizzo and Garbelotto, 2003). Other long and short
range anthropogenic vectors might include activities
associated with the rhododendron and camellia trade
(both ornamental species are hosts for the pathogen),
movement of infected plant material, and movement
of soil. Worth noting is the fact that of the currently
known movement pathways for the spread of the dis-
ease, regulatory efforts have a greater impact on the
anthropogenic spread mechanisms (e.g. activities as-
sociated with trade in ornamental host plants such as
rhododendron and other ornamentals that are hosts for
P. ramorum; Rizzo and Garbelotto, 2003). We mention
this for two reasons. First, there might be additional
inputs to the models not used here, and second, that
regulation can limit spread of the disease into the areas
predicted by the model.

The regional differences expressed by the models
are interesting. The one-class method produced several
entirely new areas of risk (e.g. the scattered patches of
risk in Trinity and Mendocino Counties, and extensive
risk in Humboldt County, shown inFig. 4A, the sparse
woodland in Los Angeles County shown inFig. 5A, the
Sierra Nevada foothills region shown inFig. 6A, and
small patches of risk in Contra Costa, Alameda, and
Fig. 7. Predicted area of SOD risk in the San Francisco Ba
 Mapped results from: (A) one-class SVMs; and (B) two-class
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Santa Clara woodlands shown inFig. 7A). The two-
class method tended to expand areas of core risk (those
that were predicted to be at risk by both models). See,
for example, areas in Mendocino County (Fig. 4B),
Santa Barbara County (Fig. 5B), and small fringe ar-
eas in Sonoma, Napa, and Yolo Counties (Fig. 7B).
These patterns of difference need further discussion.
Controls on this disease spread are complex, and in-
volve interactions between environmental factors and
host distribution, which are modeled here, and other
factors not modeled here, such as genetic variability
and resistance, and human assisted spread of the dis-
ease. In this paper we are not attempting to explain all
the regional variations in the predicted risk maps; we
plan on investigating that later. We can surmise here
that the model prediction differences have largely to
do with the use of ‘pseudo’ absence data. Our ‘pseudo’
absence data was constrained to the area with hosts
for the disease, and so ‘pseudo’ absence data were lo-
cated throughout the host range. This perhaps caused
the two-class model to predict less overall risk in the
study area.

6. Conclusions

In this study, we used one-class and two-class SVMs
to predict the potential distribution of a new forest dis-
ease called Sudden Oak Death in California. Two-class
SVMs with ‘pseudo’ absence data and one-class SVMs
w class
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We believe that support vector machines, while not
used commonly in ecology, are a useful addition to eco-
logical niche modeling. When coupled with geographic
information systems, SVMs will be a useful method
to deal with presence-only data in ecological analysis
over a range of scales. We plan to further investigate
the differences between the models in regions, to refine
our understanding of the complex interaction between
the environmental variables in areas such as the Sierra
Nevada foothills, where the two models predicted dif-
ferent results. We also plan to expand this modeling
approach to cover the conterminous US, and compare
the results of this work with other SOD modeling ap-
proaches in the near future.
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